知识点二十一:回溯算法

前言

回溯算法思想非常简单,但是应用却非常广泛。它除了用来指导像深度优先搜索这种经典的算法设计之外,还可以用在很多实际的软件开发场景中,比如正则表达式匹配、编译原理中的语法分析等。除此之外,很多经典的数学问题都可以用回溯算法来解决,比如数独、八皇后、0-1 背包、图的着色、旅行商问题、全排列等等。既然应用如此广泛,我们今天就来学习一下这个算法思想,看看它是如何指导我们解决问题的。

如何理解“回溯算法”?

2004 年上映了一部非常著名的电影《蝴蝶效应》,讲的就是主人公为了达到自己的目标,一直通过回溯的方法,回到童年,在关键的岔路口,重新做选择。当然,这只是科幻电影,我们的人生是无法倒退的,但是这其中蕴含的思想其实就是回溯算法

笼统地讲,回溯算法很多时候都应用在“搜索”这类问题上。不过这里说的搜索,并不是狭义地指图的搜索算法,而是在一组可能的解中,搜索满足期望的解。回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段,我们都会面对一个岔路口,我们先随意选一条路走,当发现这条路走不通的时候(不符合期望的解),就回退到上一个岔路口,另选一种走法继续走。

举一个经典的回溯例子,八皇后问题。假设有一个 8x8 的棋盘,希望往里放 8 个棋子(国际象棋中的皇后),每个棋子所在的行、列、对角线都不能有另一个棋子。如下图所示,第一幅图是满足条件的一种放置方式,第二幅图是不满足条件的情况。八皇后问题就是期望找到所有满足这种要求的放棋子方式。
在这里插入图片描述
利用回溯的思想,我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前放法是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。
回溯算法非常适合用递归代码实现,把八皇后的算法翻译成代码如下:

int[] result = new int[8];//全局或成员变量,下标表示行,值表示queen存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);
  if (row == 8) { // 8个棋子都放置好了,打印结果
    printQueens(result);
    return; // 8行棋子都放好了,已经没法再往下递归了,所以就return
  }
  for (int column = 0; column < 8; ++column) { // 每一行都有8列,有8种放法
    if (isOk(row, column)) { // 判断放置方法是否满足要求
      result[row] = column; // 第row行的棋子放到了column列
      cal8queens(row+1); // 递归调用函数cal8queens,考察下一行
    }
  }
}

private boolean isOk(int row, int column) {//判断row行column列的放置是否合适
  int leftup = column - 1, rightup = column + 1;
  for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
    if (result[i] == column) return false; // 第i行的column列有棋子吗?
    if (leftup >= 0) { // 考察左上对角线:第i行leftup列有棋子吗?
      if (result[i] == leftup) return false;
    }
    if (rightup < 8) { // 考察右上对角线:第i行rightup列有棋子吗?
      if (result[i] == rightup) return false;
    }
    --leftup; 
    ++rightup;
  }
  return true;
}

private void printQueens(int[] result) { // 打印出一个放置好八皇后的二维矩阵
  for (int row = 0; row < 8; ++row) {
    for (int column = 0; column < 8; ++column) {
      if (result[row] == column) System.out.print("Q ");
      else System.out.print("* ");
    }
    System.out.println();
  }
  System.out.println();
}

回溯算法实例分析

1. 0-1 背包问题

0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是我们今天讲的回溯算法。

0-1 背包问题有很多变体,这里仅介绍一种比较基础的。假设有一个背包,背包总的承载重量是 Wkg。现在有 n 个物品,每个物品的重量不等,并且不可分割(即不可以只装某个物品的一部分到背包里面)。我们期望选择几件物品装载到背包中,在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

这个背包问题中,物品是不可分割的,要么装要么不装,所以叫 0-1 背包问题。显然,这个问题已经无法通过贪心算法来解决了。那我们现在来看看,如何用回溯算法来解决。对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于 n 个物品来说,总的装法就有 2n 种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量最接近 Wkg 的。不过,我们如何才能不重复地穷举出这 2^n 种装法呢?

这里就可以用到回溯的思想。我们把物品依次排列,整个问题就分解为了 n 个阶段,每个阶段对应一个物品该怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。

public int maxW = Integer.MIN_VALUE; //maxW表示当前背包中所放物品总重量的最大值
// cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
// w表示背包可承受的重量;items表示每个物品的重量;n表示物品个数
// 假设背包可承受重量100,物品个数10,物品重量存储在数组a中,那可以这样调用下面的函数:f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
  if (cw == w || i == n) { //表明递归结束条件:cw==w表示装满了; i==n表示已经考察完所有的物品
    if (cw > maxW) maxW = cw; //保证 maxW 跟踪所有选择中的最大值,选择总重量最接近 Wkg 的装法
    return;
  }
  f(i+1, cw, items, n, w);//表示不选择当前物品,直接考虑下一个物品(第 i+1 个),故 cw 不更新
  if (cw + items[i] <= w) {// 判断是否超重,若已经超过可以背包承受的重量的时候,就不要再装了
    f(i+1,cw + items[i], items, n, w); //表示选择了当前物品,故在考虑下一个时,cw 更新为 cw + items[i]
  }
}

这里的代码稍微用到了一点搜索剪枝的技巧,就是当发现已经选择的物品的重量超过 Wkg 之后,我们就停止继续探测剩下的物品。实际上,回溯的思想就是暴力枚举,遍历所有的情况,当满足情况就停止遍历(剪枝)。

2. 正则表达式

对于一个开发工程师来说,正则表达式应该都不陌生。在平时的开发中,或多或少都应该用过。实际上,正则表达式里最重要的一种算法思想就是回溯。正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。为了方便讲解,假设正则表达式中只包含“ * ”和“ ? ”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“ * ”表示可匹配任意多个(大于等于 0 个)字符,“?”表示可匹配零个或者一个任意字符。基于以上背景假设,如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?

我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。当遇到通配符的时候,我们就有多种处理方式了,也就是出现了所谓的岔路口,比如“ * ”有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意选择其中一种匹配方案,继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到一开始这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。

public class Pattern {
  private boolean matched = false;
  private char[] pattern; // 正则表达式
  private int plen; // 正则表达式长度

  public Pattern(char[] pattern, int plen) {
    this.pattern = pattern;
    this.plen = plen;
  }

  public boolean match(char[] text, int tlen) { // 文本串及长度
    matched = false;
    rmatch(0, 0, text, tlen);
    return matched;
  }

  private void rmatch(int ti, int pj, char[] text, int tlen) {
    if (matched) return; // 如果已经匹配了,就不要继续递归了
    if (pj == plen) { // 正则表达式到结尾了
      if (ti == tlen) matched = true; // 文本串也到结尾了
      return;
    }
    if (pattern[pj] == '*') { // * 匹配任意个字符
      for (int k = 0; k <= tlen-ti; ++k) {
        rmatch(ti+k, pj+1, text, tlen);
      }
    } else if (pattern[pj] == '?') { // ?匹配0个或者1个字符
      rmatch(ti, pj+1, text, tlen);
      rmatch(ti+1, pj+1, text, tlen);
    } else if (ti < tlen && pattern[pj] == text[ti]) { // 非通配符的字符匹配
      rmatch(ti+1, pj+1, text, tlen);
    }
  }
}

小结

一、回溯算法
1.如何理解“回溯”的思想
回溯的处理思想,其实就类似于枚举搜索。枚举所有的解,找到满足期望的解。为了有规律的枚举所有可能的解,避免遗漏和重复,所以把问题求解的过程分为多个阶段。每个阶段都有多个选择,相当于每个阶段都是一个岔路口,先随意选择一个,当发现走不通时,就退回到上一个岔路口,另选一种走法继续走。
2.经典应用:八皇后问题,0-1 背包问题,正则表达式匹配,深度优先搜索,图的着色、旅行商问题、数独、全排列等等。
3.回溯算法大部分情况下,都是用来解决广义的搜索问题,也就是,从一组可能的解中,选择出一个满足要求的解。回溯算法非常适合用递归来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。
在这里插入图片描述

参考

《数据结构与算法之美》
王争
前Google工程师

回溯算法的几种应用的示例:https://algorithm-visualizer.org/backtracking/n-queens-problem

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值