知识点二十二:动态规划

前言

淘宝的“双十一”购物节有各种促销活动,比如“满 200 元减 50 元”。假设你女朋友的购物车中有 n 个(n>100)想买的商品,她希望从里面选几个,在凑够满减条件的前提下,让选出来的商品价格总和最大程度地接近满减条件(200 元),这样就可以极大限度地“薅羊毛”。作为程序员的你,如何编个程序来帮她搞定这个问题呢?要想高效地解决这个问题,就要用到动态规划(Dynamic Programming)这个算法思想了。

初识动态规划

动态规划比较适合用来求解最优问题,比如求最大值、最小值等等。它可以非常显著地降低时间复杂度,提高代码的执行效率。不过,它也是出了名的难学,主要的学习难点跟递归类似,那就是求解问题的过程不太符合人类常规的思维方式。对于新手来说,要想入门并掌握好它确实不容易。因此,接下来我们先通过两个非常经典的动态规划问题模型,来理解我们为什么需要动态规划,以及动态规划解题方法是如何演化出来的。

1. 0-1 背包问题

前面学习贪心算法、回溯算法的时候,我们已经多次讲到背包问题。今天,我们依旧拿这个问题来举例。对于一组不同重量、不可分割的物品,我们需要选择一些物品装入背包,在满足背包最大重量限制的前提下,背包中可装入的物品总重量的最大值是多少呢?

关于这个问题,我们可以采用回溯的解决方法,也就是穷举搜索所有可能的装法,然后找出满足条件的最大值。

// 回溯算法实现。注意:这里把输入的变量都定义成了成员变量。
private int maxW = Integer.MIN_VALUE; // maxW存放背包中可装入的物品总重量的最大值
private int[] weight = {22463};  // 不同物品的重量
private int n = 5; // 物品个数
private int w = 9; // 背包可承受的最大重量
public void f(int i, int cw) { //cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
  if (cw == w || i == n) { // cw==w表示装满了,i==n表示物品都考察完了
    if (cw > maxW) maxW = cw; // 保证 maxW 跟踪所有选择中的最大值
    return;
  }
  f(i+1, cw); // 选择不装入当前(第 i个)物品,直接考虑下一个(第 i+1个)物品,故 cw 不更新
  if (cw + weight[i] <= w) { 
  // if 判断为剪枝操作,当发现已经选择的物品的重量超过背包可承受的最大重量 W 时,停止继续探测剩下的物品
    f(i+1,cw + weight[i]); // 选择了当前物品,故在考虑下一个时,cw 更新为 cw + weight[i]
  }
}

不过,回溯算法的复杂度比较高,是指数级别的。那有没有什么规律,可以进一步有效降低时间复杂度呢?我们举个具体的数值代入分析一下这个问题,假设背包的最大承载重量是 9,有 5 个不同的物品,每个物品的重量分别是 2,2,4,6,3。如果把这个例子的回溯求解过程,用递归树画出来,就是下面这个样子(物体编号从0开始):
在这里插入图片描述
递归树中的每个节点表示一种状态,我们用(i, cw)来表示。其中,i 表示当前要决策第几个物品是否装入背包,cw 表示当前背包中物品的总重量。比如,(2,2)表示我们将要决策第 2 个物品是否装入背包,在决策前,背包中已装入的物品的总重量为 2。每个节点的左子节点表示不装入当前(第 i 个)物品,直接考虑下一个(第 i+1个)物品,故cw不更新;右子节点表示选择装入当前(第 i 个)物品,故考虑下一个(第 i+1个)物品时 cw 已经更新为 cw + 第 i 个物品的重量。

从图中的递归树可以发现,有些子问题的求解是重复的,比如图中 f(2, 2) 和 f(3,4) 都被重复计算了两次。我们可以建立一个“备忘录”,记录下已经计算好的 f(i, cw),当再次遇到重复的 f(i, cw) 的时候,就可以直接从备忘录中取出来用,不用再递归计算了,这样就可以避免冗余计算。如下图所示,颜色相同的节点为重复节点。这样一来,每一层所需要计算的节点不会超过 w 个(w 表示背包可承载的重量),也就是例子中的 9。
在这里插入图片描述

private int maxW = Integer.MIN_VALUE; // maxW存放背包中可装入的物品总重量的最大值
private int[] weight = {22463};  // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包可承受的最大重量
private boolean[][] mem = new boolean[5][10]; // 备忘录,布尔型数组,默认值为false
public void f(int i, int cw) { //cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
  if (cw == w || i == n) { // cw==w表示装满了,i==n表示物品都考察完了
    if (cw > maxW) maxW = cw; // 保证 maxW 跟踪所有选择中的最大值
    return;
  }
  if (mem[i][cw]) return; // 当遇到重复状态时,直接return,不再递归计算,避免冗余计算
  mem[i][cw] = true; // 若不重复,则记录当前(i, cw)这个状态到备忘录中
  f(i+1, cw); // 选择不装第i个物品
  if (cw + weight[i] <= w) {
    f(i+1,cw + weight[i]); // 选择装第i个物品
  }
}

这种解决方法利用“备忘录”的解决方法避免了冗余计算,提高了效率。实际上,它已经跟动态规划的执行效率基本上没有差别。但是,多一种方法就多一种解决思路,我们现在来看看动态规划又是怎么做的。

我们把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个物品决策(放入或者不放入背包)完之后,背包中的物品的重量会有多种情况,也就是说,又会到达多种不同的状态,对应到递归树中,就是有很多不同的节点。我们把每一层重复的状态(节点)合并,只记录不同的状态,然后基于上一层的状态集合,来推导下一层的状态集合。通过合并每一层重复的状态,我们可以保证每一层不同状态的个数都不会超过 w 个(w 表示背包的承载重量),也就是例子中的 9。于是,这样就避免了每层状态个数的指数级增长。

我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。

  • 第 0 个(物品下标从 0 开始编号)物品的重量是 2,要么装入背包,要么不装入背包,决策完之后,会对应背包的两种状态,背包中物品的总重量是 0 或者 2。我们用 states[0][0]=true 和 states[0][2]=true 来表示这两种状态。
  • 第 1 个物品的重量也是 2,基于之前的背包状态,在这个物品决策完之后,不同的状态有 3 个,即背包中物品总重量分别是 0(0+0),2(0+2 or 2+0),4(2+2)。我们用 states[1][0]=true,states[1][2]=true,states[1][4]=true 来表示这三种状态。
  • 以此类推,直到考察完所有的物品后,整个 states 状态数组就都计算好了。整个计算的过程如下图所示。图中横轴表示对应每个物品决策完后背包中物品的总重量,纵轴表示待决策物品的编号,数组中的每个位置上 0 表示 false,1 表示 true。我们只需要在最后一层(即最后一个物品决策完之后),找一个值为 true 的最接近 w(这个例子中为 9)的值,就是背包中物品总重量的最大值。
    在这里插入图片描述
    在这里插入图片描述
    把上面的过程,翻译成代码如下:
// weight:物品重量,n:物品个数,w:背包可承载的最大重量
public int knapsack(int[] weight, int n, int w) {
  boolean[][] states = new boolean[n][w+1]; // 状态数组中每个位置上的初始值为false
  states[0][0] = true;  // 选择不将第 0 个物品装入背包
  if (weight[0] <= w) {
    states[0][weight[0]] = true; // 选择把第 0 个物品装入背包
  }
  for (int i = 1; i < n; ++i) { // 动态规划状态转移
    for (int j = 0; j <= w; ++j) { // 不把第i个物品放入背包,背包重量保持原有重量状态
      if (states[i-1][j] == true) { // 基于上一层的状态集合,来推导下一层的状态集合
      	states[i][j] = states[i-1][j];
      }
    }
    for (int j = 0; j <= w-weight[i]; ++j) { //把第i个物品放入背包,背包重量 = 原有重量 + 第i个物品的重量
      if (states[i-1][j]==true) { // 基于上一层的状态集合,来推导下一层的状态集合
      	states[i][j+weight[i]] = true; 
      } 
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果
    if (states[n-1][i] == true) return i; // 输出最后一层中值为true且最接近 w 的值
  }
  return 0;
}

实际上,这就是一种用动态规划解决问题的思路。我们把问题分解为多个阶段,每个阶段对应一个决策。我们记录每一个阶段可达的状态集合(去掉重复的),然后通过当前阶段的状态集合,来推导下一个阶段的状态集合,动态地往前推进,这也正是动态规划这个名字的由来。

我们知道,用回溯算法来解决这个问题的时间复杂度是 O(2n),是指数级的。那动态规划解决方案的时间复杂度是多少呢?其实上面这个代码的时间复杂度非常好分析,耗时最多的部分就是代码中间的两层 for 循环,所以时间复杂度是 O(n*w)。n 表示物品个数,w 表示背包可承载的重量。

从理论上讲,指数级的时间复杂度肯定要比 O(n * w) 高很多。假设有 10000 个物品,重量分布在 1 到 15000 之间,背包可以承载的总重量是 30000。如果用回溯算法解决,用具体的数值表示出时间复杂度,就是 210000,这是一个相当大的一个数字。如果用动态规划解决,用具体的数值表示出时间复杂度,就是 10000*30000。虽然看起来也很大,但是和 210000 比起来还是要小太多了。

尽管动态规划的执行效率比较高,但是就刚刚的代码实现来说,我们需要额外申请一个 n * w+1 的二维数组,对空间的消耗比较多。所以,有时候,我们会说,动态规划是一种空间换时间的解决思路。那有什么办法可以降低空间消耗吗?

实际上,我们只需要一个大小为 w+1 的一维数组就可以解决这个问题。动态规划状态转移的过程,都可以基于这个一维数组来操作。

// items:物品重量,n:物品个数,w:背包可承载的最大重量
public static int knapsack2(int[] items, int n, int w) {
  boolean[] states = new boolean[w+1]; // states表示当前背包总重量所有可能取值的集合,初始值为false
  states[0] = true;  // 选择不将第 0 个物品装入背包
  if (items[0] <= w) {
    states[items[0]] = true; // 选择把第 0 个物品装入背包
  }
  for (int i = 1; i < n; ++i) { // 动态规划
    for (int j = w-items[i]; j >= 0; --j) { 
    //如果选择将第i个物品放入背包,我们需要在当前背包总重量的所有可能取值中,找到小于等于j=w-items[i]的,
    //这里 j 需要从大到小来处理。如果按照 j 从小到大处理的话,states[j+items[i]] = true 这个赋值会影响后续的处理,会出现 for 循环重复计算的问题。
      if (states[j]==true) states[j+items[i]] = true;
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果
    if (states[i] == true) return i;
  }
  return 0;
}

2. 0-1 背包问题升级版

刚刚讲的背包问题,只涉及背包重量和物品重量。我们现在引入物品价值这一变量。对于一组不同重量、不同价值、不可分割的物品,我们选择将某些物品装入背包,在满足背包最大重量限制的前提下,背包中可装入物品的总价值最大是多少呢?

这个问题依旧可以用回溯算法来解决,具体代码如下:

private int maxV = Integer.MIN_VALUE; // 结果放到maxV中
private int[] items = {22463};  // 物品的重量
private int[] value = {34896}; // 物品的价值
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw, int cv) { // i表示考察到哪个物品了;cw表示当前背包中的物品的重量和;cv 表示当前背包中物体的总价值
  if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
    if (cv > maxV) maxV = cv;
    return;
  }
  f(i+1, cw, cv); // 选择不装第i个物品
  if (cw + weight[i] <= w) {
    f(i+1, cw+weight[i], cv+value[i]); // 选择装第i个物品
  }
}

我们还是照例画出递归树。在递归树中,每个节点表示一个状态。现在我们需要 3 个变量(i, cw, cv)来表示一个状态。其中,i 表示即将要决策第 i 个物品是否装入背包,cw 表示当前背包中物品的总重量,cv 表示当前背包中物品的总价值。
在这里插入图片描述
我们可以发现,在递归树中,有几个节点的 i 和 cw 是完全相同的,比如 f(2,2,4) 和 f(2,2,3),f(3,4,8) 和 f(3,4,7)。在背包中物品总重量一样的情况下,f(2,2,4) 这种状态对应的物品总价值更大,我们可以舍弃 f(2,2,3) 这种状态,只需要沿着 f(2,2,4) 这条决策路线继续往下决策就可以。同理,对于f(3,4,8) 和 f(3,4,7),我们选择物品总价值更大的 f(3,4,8) 这条决策路线继续往下决策。也就是说,对于 (i, cw) 相同的不同状态,我们只需要保留 cv 值最大的那个,继续递归处理,其他状态不予考虑。

如果用回溯算法,这个简化的思路就没法再用“备忘录”解决了。所以,我们就需要换一种思路,看看动态规划是不是更容易解决这个问题?

我们还是把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个阶段决策完之后,背包中的物品的总重量以及总价值,会有多种情况,也就是会达到多种不同的状态。我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。不过这里数组存储的值不再是 boolean 类型的了,而是当前状态对应的最大总价值。我们把每一层中 (i, cw) 重复的状态(节点)合并,只记录 cv 值最大的那个状态,然后基于这些状态来推导下一层的状态。这个动态规划的过程翻译成代码,就是下面这个样子:

// weight:物品的重量,value:物品的价值,n:物品个数,w:背包可承载的最大重量
public static int knapsack3(int[] weight, int[] value, int n, int w) {
  int[][] states = new int[n][w+1];
  for (int i = 0; i < n; ++i) { // 初始化states数组,初始值为-1
    for (int j = 0; j < w+1; ++j) {
      states[i][j] = -1;
    }
  }
  states[0][0] = 0; // 不选择第0个物品
  if (weight[0] <= w) {
    states[0][weight[0]] = value[0]; // 选择装入第0个物品
  }
  for (int i = 1; i < n; ++i) { //动态规划,状态转移
    for (int j = 0; j <= w; ++j) { // 不选择第i个物品
      if (states[i-1][j] >= 0) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) { // 选择第i个物品
      if (states[i-1][j] >= 0) {
        int v = states[i-1][j] + value[i];
        if (v > states[i][j+weight[i]]) {
          states[i][j+weight[i]] = v; // 记录总价值最大的那个状态
        }
      }
    }
  }
  // 输出结果
  int maxvalue = -1;
  for (int j = 0; j <= w; ++j) {
    if (states[n-1][j] > maxvalue) maxvalue = states[n-1][j]; // 从最后一层中找出背包中总价值最大对应的那个状态
  }
  return maxvalue;
}

关于这个问题,耗时最多的部分也是代码中间的两层 for 循环,所以时间复杂度是 O(n * w),n 表示物品个数,w 表示背包可承载的重量。我们额外申请了一个 n * w+1 的二维数组,所以空间复杂度也是 O(n * w)。跟上一个例子类似,这里的空间复杂度也是可以优化的。

动态规划理论

1. “一个模型三个特征”

什么样的问题适合用动态规划来解决呢?换句话说,动态规划能解决的问题有什么规律可循呢?实际上,动态规划作为一个非常成熟的算法思想,很多人对此已经做了非常全面的总结。总的来说,这些问题可以总结概括为“一个模型三个特征”。

首先,我们来看,什么是“一个模型”?它指的是动态规划适合解决的问题的模型,这个模型被定义为“多阶段决策最优解模型”。具体来说,我们一般是用动态规划来求解最优值问题。而解决问题的过程,需要经历多个决策阶段,每个决策阶段都对应着一组状态。然后我们寻找一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值。

现在,我们再来看,什么是“三个特征”?它们分别是最优子结构、无后效性和重复子问题

  1. 最优子结构
    最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。如果我们把最优子结构,对应到前面所定义的动态规划问题模型上,那我们也可以理解为,后面决策阶段的状态可以通过前面决策阶段的状态推导出来。
  2. 无后效性
    无后效性有两层含义,第一层含义是,在推导后面阶段的状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求,只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。
  3. 重复子问题
    这个概念比较好理解。如果用一句话概括一下,那就是,不同的决策序列,到达某个相同的阶段时,可能会产生重复的状态。

2. 实例剖析

通过上述的“一个模型三个特征”,可以鉴别一个问题是否可以用动态规划来解决。理论部分的知识理解起来比较抽象,所以接下来结合一个具体的问题来进一步详细剖析这些知识点。

假设有一个 n 乘以 n 的棋盘 w[n][n]。矩阵中存储的都是正整数。棋子的起始位置在左上角,终止位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一格。从左上角到达右下角,会有很多不同的路径可以走。把每条路径经过的数字加起来看作路径的长度。那么,从左上角移动到右下角的最短路径长度是多少呢?
在这里插入图片描述
我们先看看,这个问题是否符合“一个模型”?

从 (0, 0) 走到 (n-1, n-1),总共要走 2*(n-1) 步,也就对应着 2*(n-1) 个阶段。每个阶段都有向右走或者向下走两种决策,并且每个阶段都会对应一个状态集合。所以,这个问题是一个多阶段决策最优解问题,符合动态规划适合求解的问题的模型定义。
在这里插入图片描述
我们再来看,这个问题是否符合“三个特征”?

如果针对这个问题的决策过程画一下递归树,就会发现,递归树中有重复的节点,即图中有多条路径会共同经过的节点,说明这个问题中存在“重复子问题”。
在这里插入图片描述
如果我们走到 (i, j) 这个位置,我们只能通过 (i-1, j),(i, j-1) 这两个位置移动过来,也就是说,我们想要计算 (i, j) 位置对应的状态,只需要关心 (i-1, j),(i, j-1) 两个位置对应的状态,并不关心棋子是通过什么样的路线到达这两个位置的。而且,我们仅仅允许往下和往右移动,不允许后退,所以,前面阶段的状态确定之后,不会被后面阶段的决策所改变,所以,这个问题符合“无后效性”这一特征。

我们把从起始位置 (0, 0) 到 (i, j) 的最小路径,记作 min_dist(i, j),其中 i 表示行,j 表示列。min_dist 表达式的值表示从 (0, 0) 到达 (i, j) 的最短路径长度。因为我们只能往右或往下移动,所以,我们只有可能从 (i, j-1) 或者 (i-1, j) 两个位置到达 (i, j)。也就是说,到达 (i, j) 的最短路径要么经过 (i, j-1),要么经过 (i-1, j),而且到达 (i, j) 的最短路径肯定包含到达这两个位置的最短路径中更短的那条路径。换句话说,min_dist(i, j) 可以通过 min_dist(i, j-1) 和 min_dist(i-1, j) 两个状态推导出来。这就说明,这个问题符合“最优子结构”。

min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

动态规划解题思路总结

解决动态规划问题,一般有两种思路。我把它们分别叫作,状态转移表法状态转移方程法

1. 状态转移表法

一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。所以,当我们拿到问题的时候,我们可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。从递归树中,我们很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。

找到重复子问题之后,接下来,我们有两种处理思路,第一种是直接用回溯+备忘录的方法,来避免重复子问题。从执行效率上来讲,这其实已经跟动态规划的解决思路没有什么差别。第二种则是使用动态规划的解决方法,状态转移表法。我们重点来看状态转移表法是如何工作的。

我们先画出一个状态表。状态表一般都是二维的,所以可以把它想象成二维数组。其中,每个状态包含三个变量,行、列、数组值。我们根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,我们将这个递推填表的过程翻译成代码,就是动态规划代码了。

尽管大部分状态表都是二维的,但如果问题的状态比较复杂,需要很多变量来表示,那对应的状态表可能就是高维的,比如三维、四维。那这个时候就不适合用状态转移表法来解决了。一方面是因为高维状态转移表不好画图表示,另一方面是因为人脑确实很不擅长思考高维的东西。

现在,我们来看一下,如何套用这个状态转移表法,来解决之前那个棋盘矩阵最短路径的问题?

从起点到终点,我们有很多种不同的走法。我们可以穷举所有走法,然后对比找出一个最短走法。不过如何才能无重复又不遗漏地穷举出所有走法呢?我们可以用回溯算法这个比较有规律的穷举算法。回溯算法的代码实现如下所示:

private int minDist = Integer.MAX_VALUE; // 全局变量或者成员变量
// 调用方式:minDistBacktracing(0, 0, 0, w, n);
public void minDistBT(int i, int j, int dist, int[][] w, int n) {
  if (i == n && j == n) { // 判断是否走到了(n-1, n-1)这个位置
    if (dist < minDist) minDist = dist;
    return;
  }
  if (i < n) { // 往下走,更新i=i+1, j=j
    minDistBT(i + 1, j, dist+w[i][j], w, n);
  }
  if (j < n) { // 往右走,更新i=i, j=j+1
    minDistBT(i, j+1, dist+w[i][j], w, n);
  }
}

接下来,我们要画出递归树,以此来寻找重复子问题。在递归树中,一个状态(也就是一个节点)包含三个变量 (i, j, dist),其中 i,j 分别表示行和列,dist 表示从起点到达节点 (i, j) 的路径长度。从图中,我们看出,尽管 (i, j, dist) 不存在重复的,但是 (i, j) 重复的有很多。对于 (i, j) 重复的节点,我们只需要选择 dist 最小的节点,继续递归求解,其他节点就可以舍弃了。
在这里插入图片描述
我们画出一个二维状态表,表中的行、列表示棋子所在的位置,表中的数值表示从起点到这个位置的最短路径。我们按照决策过程,通过不断状态递推演进,将状态表填好。为了方便代码实现,我们按行来进行依次填充。
在这里插入图片描述
在这里插入图片描述弄懂了填表的过程,代码实现就简单多了。我们将上面的过程,翻译成代码,就是下面这个样子。

public int minDistDP(int[][] matrix, int n) {
  int[][] states = new int[n][n];
  int sum = 0;
  for (int j = 0; j < n; ++j) { // 初始化states数组的第一行数据
    sum += matrix[0][j];
    states[0][j] = sum;
  }
  sum = 0; // sum重置为0
  for (int i = 0; i < n; ++i) { // 初始化states数组的第一列数据
    sum += matrix[i][0];
    states[i][0] = sum;
  }
  for (int i = 1; i < n; ++i) {
    for (int j = 1; j < n; ++j) {
      states[i][j] = matrix[i][j] + Math.min(states[i][j-1], states[i-1][j]); 
      // min_dist(i, j)通过 min_dist(i, j-1) 和 min_dist(i-1, j) 两个状态中更短的那条路径推导出
    }
  }
  return states[n-1][n-1]; // states数组最后一个位置上记录的即为最短路径长度
}

2. 状态转移方程法

状态转移方程法有点类似递归的解题思路。我们需要分析,某个问题如何通过子问题来递归求解,也就是所谓的最优子结构。根据最优子结构,写出递归公式,也就是所谓的状态转移方程。有了状态转移方程,代码实现就非常简单了。一般情况下,有两种代码实现方法,一种是递归加“备忘录”,另一种是迭代递推

还是拿刚才棋盘求最短路径的例子来举例。最优子结构前面已经分析过了,对应的递归公式也即所谓的状态转移方程如下:

min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))

状态转移方程是解决动态规划的关键。如果我们能写出状态转移方程,那动态规划问题基本上就解决了一大半,翻译成代码非常简单。但是这种方法的难点往往在于,很多动态规划问题的状态本身就不好定义,状态转移方程也就更不好想到。

下面采用**递归加“备忘录”**的方式,将状态转移方程翻译成来代码如下:

private int[][] matrix = 
         {{1359}, {2134}{5267}{6843}}; // 棋盘矩阵
private int n = 4;
private int[][] mem = new int[4][4]; // 备忘录
public int minDist(int i, int j) { // 从minDist(n-1, n-1)开始递归调用函数;
  if (i == 0 && j == 0) return matrix[0][0]; // 递归到了第一个位置
  if (mem[i][j] > 0) return mem[i][j];
  int minLeft = Integer.MAX_VALUE;
  if (j-1 >= 0) {
    minLeft = minDist(i, j-1); // 向左递归
  }
  int minUp = Integer.MAX_VALUE;
  if (i-1 >= 0) {
    minUp = minDist(i-1, j); // 向上递归
  }
  
  int currMinDist = matrix[i][j] + Math.min(minLeft, minUp);  // 递推公式,即状态转移方程
  mem[i][j] = currMinDist; // 将当前位置的最短路径长度记录到备忘录中
  return currMinDist;
}

对于另一种实现方式(迭代递推),跟前面状态转移表法的代码实现是一样的,只是思路不同,根据状态转移方程递推出下一步的最短路径。

两种动态规划的解题思路到这里就讲完了,总结一下:

  1. 状态转移表法解题思路大致可以概括为:回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码
  2. 状态转移方程法的大致思路可以概括为:找最优子结构 - 写出状态转移方程 - 将状态转移方程翻译成代码

不过这里还要强调一点:不是每个问题都同时适合这两种解题思路。有的问题可能用第一种思路更清晰,而有的问题可能用第二种思路更清晰,所以,实践中要结合具体的题目来看,到底选择用哪种解题思路。

动态规划实战

Trie 树那节我们讲过,利用 Trie 树,可以实现搜索引擎的关键词提示功能,这样可以节省用户输入搜索关键词的时间。实际上,搜索引擎在用户体验方面的优化还有很多,比如可能经常会用到的拼写纠错功能。当我们在搜索框中一不小心输错单词时,搜索引擎会非常智能地检测出拼写错误,并且用对应的正确单词来进行搜索。接下来,我们就来一起看看,如何采用动态规划实现搜索引擎中的拼写纠错功能
在这里插入图片描述

1.如何量化两个字符串的相似度?

由于计算机只认识数字,所以要实现这个功能,首先我们要知道如何量化两个字符串之间的相似程度呢?有一个非常著名的量化方法,那就是编辑距离(Edit Distance)。顾名思义,编辑距离指的就是,将一个字符串转化成另一个字符串,需要的最少编辑操作次数(比如增加一个字符、删除一个字符、替换一个字符)。编辑距离越大,说明两个字符串的相似程度越小;编辑距离就越小,说明两个字符串的相似程度越大。对于两个完全相同的字符串来说,编辑距离就是 0。

根据所包含的编辑操作种类的不同,编辑距离有多种不同的计算方式,比较著名的有莱文斯坦距离(Levenshtein distance)和最长公共子串长度(Longest common substring length)。其中,莱文斯坦距离允许增加、删除、替换字符这三个编辑操作,而最长公共子串长度只允许增加、删除字符这两个编辑操作。而且,莱文斯坦距离和最长公共子串长度是从两个截然相反的角度来分析字符串的相似程度。莱文斯坦距离的大小,表示两个字符串差异的大小;而最长公共子串的大小,表示两个字符串相似程度的大小。关于这两个计算方法,举个例子说明一下。如下图所示,两个字符串 mitcmu 和 mtacnu 的莱文斯坦距离是 3,最长公共子串长度是 4。
在这里插入图片描述
了解了编辑距离的概念之后,我们来看,如何快速计算两个字符串之间的编辑距离?

2.如何编程计算莱文斯坦距离?

首先,我们来看如何编程实现对莱文斯坦距离的计算。待求解的问题是要计算把一个字符串变成另一个字符串需要的最少编辑次数。整个求解过程,涉及多个决策阶段,我们需要依次考察一个字符串中的每个字符,跟另一个字符串中的字符是否匹配,匹配的话如何处理,不匹配的话又如何处理。所以,这个问题符合多阶段决策最优解模型

我们可以先尝试用最简单的回溯算法来解决,回溯是一个递归处理的过程。
1.如果 a[i]与 b[j]匹配,我们递归考察 a[i+1]和 b[j+1]。
2.如果 a[i]与 b[j]不匹配,那我们有多种处理方式可选:

  • 可以删除 a[i],然后递归考察 a[i+1]和 b[j];
  • 可以删除 b[j],然后递归考察 a[i]和 b[j+1];
  • 可以在 a[i]前面添加一个跟 b[j]相同的字符,然后递归考察 a[i]和 b[j+1];
  • 可以在 b[j]前面添加一个跟 a[i]相同的字符,然后递归考察 a[i+1]和 b[j];
  • 可以将 a[i]替换成 b[j],或者将 b[j]替换成 a[i],然后递归考察 a[i+1]和 b[j+1]。

将上面的回溯算法的处理思路,翻译成代码,就是下面这个样子:

private char[] a = "mitcmu".toCharArray();
private char[] b = "mtacnu".toCharArray();
private int n = 6; // 字符串a 的长度
private int m = 6; // 字符串b 的长度
private int edist = 0; // 编辑次数初始化为0
private int minDist = Integer.MAX_VALUE; // 存储结果,即最少编辑次数
// 调用方式 lwstBT(0, 0, 0);
public lwstBT(int i, int j, int edist) {
  if (i == n || j == m) { // 当某个字符串已经匹配完了
    if (i < n) edist += (n-i);
    if (j < m) edist += (m-j);
    if (edist < minDist) minDist = edist;
    return;
  }
  if (a[i] == b[j]) { // 两个字符匹配
    lwstBT(i+1, j+1, edist); // 递归考察 a[i+1]和 b[j+1],编辑次数不更新
  } else { // 两个字符不匹配
    lwstBT(i + 1, j, edist + 1); // 删除a[i] 或者b[j]前添加一个跟 a[i]相同的字符,然后递归考察 a[i+1]和 b[j],编辑次数+1
    lwstBT(i, j + 1, edist + 1); // 删除b[j] 或者a[i]前添加一个跟 b[j]相同的字符,然后递归考察 a[i]和 b[j+1],编辑次数+1
    lwstBT(i + 1, j + 1, edist + 1); // 将a[i]替换成b[j],或者将 b[j]替换成 a[i],然后递归考察 a[i+1]和 b[j+1],编辑次数+1
  }
}

根据回溯算法的代码实现,我们可以画出递归树,看是否存在重复子问题。如果存在重复子问题,那我们就可以考虑能否用动态规划来解决;如果不存在重复子问题,那回溯就是最好的解决方法。
在这里插入图片描述
在递归树中,每个节点代表一个状态,状态包含三个变量 (i, j, edist),其中,edist 表示处理到 a[i]和 b[j]时,已经执行的编辑操作的次数。在递归树中,(i, j) 两个变量相同的节点很多,比如 (3, 2) 和 (2, 3)就分别有两个重复节点。对于 (i, j) 相同的节点,我们只需要保留 edist 值最小的那个节点继续递归处理,剩下的节点都可以舍弃。所以,状态就从 (i, j, edist) 变成了 (i, j, min_edist),其中 min_edist 表示处理到 a[i]和 b[j] 已经执行的最少编辑次数。这个问题中的状态转移方式,状态 (i, j) 可能从 (i-1, j),(i, j-1),(i-1, j-1) 三个状态中的任意一个转移过来。
在这里插入图片描述
对应的状态转移方程如下:

// min表示求三数中的最小值。   
// 如果:a[i]!=b[j]
min_edist(i, j) = min(min_edist(i-1,j)+1, min_edist(i,j-1)+1, min_edist(i-1,j-1)+1)

// 如果:a[i]==b[j]
min_edist(i, j) = min(min_edist(i-1,j)+1, min_edist(i,j-1)+1min_edist(i-1,j-1))

了解了状态与状态之间的递推关系后,我们画出一个二维的状态表,按行依次来填充状态表中的每个值。
在这里插入图片描述
现在既有了状态转移方程,又弄懂了填表的过程,代码实现就简单多了。

public int lwstDP(char[] a, int n, char[] b, int m) {
  int[][] minDist = new int[n][m]; // 状态转移表
  for (int j = 0; j < m; ++j) { // 初始化第0行: a[0]与 b[0...j] 的编辑距离
    if (a[0] == b[j]) minDist[0][j] = j;  // a[0] 转化成 b[0...j] 需要的最少编辑操作次数为 j(增加 j 个字符)
    else if (j != 0) minDist[0][j] = minDist[0][j-1]+1; // a[0]不等于b[j]时, minDist+1, 且j∈(1, m-1)
    else minDist[0][j] = 1; // a[0]不等于b[0], 编辑距离为1
  }
  for (int i = 0; i < n; ++i) { // 初始化第0列: b[0]与 a[0...i]的编辑距离
    if (a[i] == b[0]) minDist[i][0] = i; // b[0] 转化成 a[0...i]需要的最少编辑操作次数为 i(增加 i 个字符)
    else if (i != 0) minDist[i][0] = minDist[i-1][0]+1; // a[i]不等于b[0], minDist+1, 且i∈(1, n-1)
    else minDist[i][0] = 1; // a[0]不等于b[0], 编辑距离为1
  }
  for (int i = 1; i < n; ++i) { // 从第1行起按行填表
    for (int j = 1; j < m; ++j) { // 针对每一行遍历每一列
      if (a[i] == b[j]) minDist[i][j] = min(minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]);
      else minDist[i][j] = min(minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]+1);
    }
  }
  return minDist[n-1][m-1];
}

private int min(int x, int y, int z) { // 取三个数中最小值的min函数
  int minv = Integer.MAX_VALUE; // int类整数的最大值是 2^31 - 1
  if (x < minv) minv = x;
  if (y < minv) minv = y;
  if (z < minv) minv = z;
  return minv;
}

3.如何编程计算最长公共子串长度?

最长公共子串作为编辑距离中的一种,只允许增加、删除字符两种编辑操作。从名字上看,它可能看起来跟编辑距离没什么关系。但实际上,从本质上来说,它表征的也是两个字符串之间的相似程度。

跟莱文斯坦距离的解决思路非常相似,计算最长公共子串长度也可以用动态规划来解决。每个状态还是包括三个变量 (i, j, max_lcs),其中,max_lcs 表示当处理到 a[i]和 b[j] 时,a[0…i]和 b[0…j]的最长公共子串长度。那 (i, j) 这个状态都是由哪些状态转移过来的呢?

先来看回溯算法的处理思路。我们从 a[0]和 b[0]开始,依次考察两个字符串中的字符是否匹配。

  • 如果 a[i]与 b[j]互相匹配,我们将最大公共子串长度加一,然后继续考察 a[i+1]和 b[j+1]。
  • 如果 a[i]与 b[j]不匹配,那么最长公共子串长度不变,这个时候,有两种不同的决策路线:
    (1)删除 a[i],或者在 b[j]前面加上一个字符 a[i],然后继续考察 a[i+1]和 b[j];
    (2)删除 b[j],或者在 a[i]前面加上一个字符 b[j],然后继续考察 a[i]和 b[j+1]。

反过来也就是说,如果我们要求 a[0…i]和 b[0…j]的最长公共长度 max_lcs(i, j),只有可能通过(i-1, j-1, max_lcs),(i-1, j, max_lcs),(i, j-1, max_lcs) 这三个状态转移过来。把这个转移过程,用状态转移方程写出来,就是下面这个样子:

// 如果:a[i]==b[j],那么:max_lcs(i, j)就等于:
max(max_lcs(i-1,j-1)+1, max_lcs(i-1, j), max_lcs(i, j-1))// 如果:a[i]!=b[j],那么:max_lcs(i, j)就等于:
max(max_lcs(i-1,j-1), max_lcs(i-1, j), max_lcs(i, j-1))//其中max表示求三数中的最大值。

有了状态转移方程,代码实现就简单多了。

public int lcs(char[] a, int n, char[] b, int m) {
  int[][] maxlcs = new int[n][m];
  for (int j = 0; j < m; ++j) { //初始化第0行:a[0..0]与b[0..j]的maxlcs
    if (a[0] == b[j]) maxlcs[0][j] = 1; // 若a[0] == b[j],a[0]与b[0..j]的 maxlcs为1
    else if (j != 0) maxlcs[0][j] = maxlcs[0][j-1];
    else maxlcs[0][j] = 0; // 若a[0] 不等于 b[0],maxlcs[0][0] = 0
  }
  for (int i = 0; i < n; ++i) { //初始化第0列:a[0..i]与b[0..0]的maxlcs
    if (a[i] == b[0]) maxlcs[i][0] = 1; // 若a[i] == b[0],a[0..i]与b[0]的 maxlcs为1
    else if (i != 0) maxlcs[i][0] = maxlcs[i-1][0];
    else maxlcs[i][0] = 0; // // 若a[0] 不等于 b[0],maxlcs[0][0] = 0
  }
  for (int i = 1; i < n; ++i) { // 按行填状态表
    for (int j = 1; j < m; ++j) {
      if (a[i] == b[j]) maxlcs[i][j] = max(maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]+1);
      else maxlcs[i][j] = max(maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]);
    }
  }
  return maxlcs[n-1][m-1];
}

private int max(int x, int y, int z) { // 取三个数中最大值的max函数
  int maxv = Integer.MIN_VALUE;
  if (x > maxv) maxv = x;
  if (y > maxv) maxv = y;
  if (z > maxv) maxv = z;
  return maxv;
}

4.如何采用动态规划实现搜索引擎中的拼写纠错功能?

现在我们来看看,如何利用刚刚讲的编辑距离这个量化方法来实现这个拼写纠错功能。当用户在搜索框内,输入一个拼写错误的单词时,我们就拿这个单词跟词库中的单词一一进行比较,计算编辑距离,将编辑距离最小的单词,作为纠正之后的单词提示给用户。这就是拼写纠错最基本的原理。

不过,真正用于商用的搜索引擎,拼写纠错功能显然不会就这么简单就解决了。一方面,单纯利用编辑距离进行量化,纠错效果并不一定好;另一方面,词库中的数据量可能很大,搜索引擎每天要支持海量的搜索,所以对纠错的性能要求也很高。

针对纠错效果不好的问题,这里介绍几种优化思路。

  1. 不仅仅是取出编辑距离最小的那个单词,而是取出编辑距离最小的 TOP 10 单词,然后根据其他参数,决策选择哪个单词作为拼写纠错单词。比如可以使用搜索热门程度来决定哪个单词作为拼写纠错单词。
  2. 采用多种编辑距离计算方法,比如前面讲到的莱文斯坦距离和最长公共子串长度,然后分别计算出编辑距离最小的 TOP 10,然后求交集,用交集的结果再继续优化处理。
  3. 还可以通过统计用户的搜索日志,得到最常被拼错的单词列表,以及对应的拼写正确的单词。搜索引擎在拼写纠错的时候,首先在这个最常被拼错的单词列表中查找。如果一旦找到,直接返回对应的正确的单词。这样纠错的效果非常好。
  4. 更加高级一点的做法是,引入个性化因素。针对每个用户,维护这个用户特有的搜索喜好,也就是用户常用的搜索关键词。当用户输入错误的单词时,我们首先在这个用户常用的搜索关键词中,计算编辑距离,查找编辑距离最小的单词。

针对纠错性能方面的优化,这里也提供两种基于分治的优化思路。

  1. 如果纠错功能的 系统吞吐量(TPS)不高,我们可以部署多台机器,每台机器运行一个独立的纠错功能。当有一个纠错请求的时候,我们通过负载均衡,将其分配到其中一台机器,来计算编辑距离,得到纠错单词。
  2. 如果纠错系统的响应时间太长,也就是每个纠错请求处理时间过长,我们可以将纠错的词库分割到很多台机器。当有一个纠错请求的时候,我们就将这个拼写错误的单词,同时发送到这多台机器上,让多台机器并行处理,分别得到编辑距离最小的单词,然后再比对合并,最终决定出一个最优的纠错单词。

当然,真正的搜索引擎的拼写纠错优化,肯定还远不止这么简单,但是万变不离其宗,掌握了其核心原理,就基本掌握了解决问题的方法,剩下就靠灵活运用和实战操练了。

四种算法思想比较分析

如果我们将贪心、分治、回溯和动态规划这四种算法思想分一下类,那贪心、回溯、动态规划可以归为一类,而分治可以单独作为一类,因为它跟其他三个都不大一样。贪心、回溯、动态规划这三个算法解决的问题的模型,都可以抽象成我们前面讲的那个多阶段决策最优解模型,而分治算法解决的问题尽管大部分也是最优解问题,但是大部分都不能抽象成多阶段决策模型。

回溯算法是个“万金油”。基本上能用动态规划、贪心算法解决的问题,我们都可以用回溯算法解决。回溯算法相当于穷举搜索。穷举所有的情况,然后对比得到最优解。不过,回溯算法的时间复杂度非常高,是指数级别的,只能用来解决小规模数据的问题。对于大规模数据的问题,用回溯算法解决的执行效率就很低了。

动态规划比回溯算法高效,但是,并不是所有问题都可以用动态规划来解决。能用动态规划解决的问题,需要满足前面提到的“一个模型三个特征”。在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分割成的子问题相互独立,不能有重复子问题,而动态规划正好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。

贪心算法实际上可以认为是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限。它能解决的问题需要满足三个条件,最优子结构、无后效性和贪心选择性。其中,最优子结构、无后效性跟动态规划中的无异。“贪心选择性”的意思是,通过局部最优的选择,能产生全局的最优选择。每一个阶段,我们都选择当前看起来是最优的决策,当所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。

解答开篇:如何巧妙解决“双十一”购物时的凑单问题?

对于这个问题,当然可以利用回溯算法,穷举所有的排列组合,看大于等于 200 并且最接近 200 的组合是哪一个?但是,这样效率太低了点,时间复杂度非常高,是指数级的。当商品数量 n 很大的时候,可能“双十一”已经结束了,你的代码还没有运行出结果,这显然会让你在女朋友心中的形象大大减分。

实际上,它跟第一个例子中讲的 0-1 背包问题很像,只不过是把“重量”换成了“价格”而已。购物车中有 n 个商品。我们针对每个商品都决策是否购买。每次决策之后,对应不同的状态集合。我们还是用一个二维数组 states[n][x],来记录每次决策之后所有可达的状态。不过,这里的 x 值是多少呢?

0-1 背包问题中,我们找的是小于等于 w 的最大值,那么 x 就是背包的最大承载重量 w+1。对于这个问题来说,我们要找的是大于等于 200(满减条件)的值中最小的,所以就不能设置为 200 + 1 了。就这个实际的问题而言,如果要购买的物品的总价格超过 200 太多,比如 超过 200 三倍,那这个羊毛“薅”得就没有太大意义了。所以,我们可以限定 x 值为 200*3+1。

// items商品价格,n商品个数, w表示满减条件,比如开篇问题中的200
public static void double11advance(int[] items, int n, int w) {
  //前半部分:找出大于等于满减条件的商品总价格最小的
  boolean[][] states = new boolean[n][3*w+1];// 超过3倍满减金额就没有太大的薅羊毛的价值了
  states[0][0] = true;  // 第一行的数据要特殊处理,不购买第0个商品
  if (items[0] <= 3*w) {
    states[0][items[0]] = true; // 购买第0个商品
  }
  for (int i = 1; i < n; ++i) { // 动态规划
    for (int j = 0; j <= 3*w; ++j) {// 不购买第i个商品
      if (states[i-1][j] == true) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= 3*w-items[i]; ++j) {// 购买第i个商品
      if (states[i-1][j]==true) states[i][j+items[i]] = true;
    }
  }
  // 后半部分:找出这个最小总价格对应都要购买哪些商品
  int j;
  for (j = w; j < 3*w+1; ++j) { 
    if (states[n-1][j] == true) break; // 从最后一层输出结果大于等于w的最小值
  }
  if (j == 3*w+1) return; // 没有可行解
  for (int i = n-1; i >= 1; --i) { // i表示二维数组中的行,j表示列
    if(j-items[i] >= 0 && states[i-1][j-items[i]] == true) { // 如果states[i-1][j-items[i]]可达,说明选择了购买第 i 个商品。
      System.out.print(items[i] + " "); // 打印出要购买的商品
      j = j - items[i];
    } 
    // 不满足if条件则表示没有购买这个商品,j不变,进入下一层循环考察下一个商品。
  }
  if (j != 0) System.out.print(items[0]); // 上面for循环中i从n-1到1都遍历完了,如果j还不为零,说明选择购买了第0个物品
}

不过,这个问题不仅要求找到大于等于 200 的商品总价格最小的,还要找出这个最小总价格对应都要购买哪些商品。我们可以利用 states 数组,倒推出这个被选择的商品序列。这个过程实际上对应的是上面代码的后半部分。代码的前半部分跟 0-1 背包问题没什么不同,我们着重看后半部分,看它是如何打印出选择购买哪些商品的。

状态 (i, j) 只有可能从 (i-1, j) 或者 (i-1, j-value[i]) 两个状态推导过来。所以,我们就检查这两个状态是否是可达的,也就是 states[i-1][j]或者 states[i-1][j-value[i]]是否为 true。如果 states[i-1][j]可达,就说明我们没有选择购买第 i 个商品,如果 states[i-1][j-value[i]]可达,那就说明我们选择了购买第 i 个商品。我们从这两个状态中选择一个可达的状态(如果两个都可达,就随意选择一个),然后,继续迭代地考察其他商品是否有选择购买。

小结

在这里插入图片描述
一、初试动态规划
1.动态规划比较适合用来求解最优问题,比如求最大值、最小值等等。它可以非常显著地降低时间复杂度,提高代码的执行效率。
2.动态规划可以理解为,从回溯法穷举搜索得到的全遍历的递归树为出发点,进行广度优先遍历,在遍历完每一层之后对每层结果进行合并(结果相同的状态)或舍弃(已经超出限制条件的状态),确保下一层遍历的数量不会超过限定条件数完W,通过这个操作大大减少不必要遍历,从而达到降低时间复杂度的目的。
3.在空间复杂度优化上,通过在计算中只保留最优结果,重复利用内存空间(类似回溯+“备忘录”的方式)。
4.经典案例:0-1背包问题及其升级版

二、动态规划理论
1.什么样的问题适合用动态规划解决?
这些问题可以总结概括为“一个模型三个特征”。其中,“一个模型”指的是,问题可以抽象成多阶段决策最优解模型。“三个特征”指的是最优子结构、无后效性和重复子问题
2.动态规划解题思路
一般有两种思路,它们分别是状态转移表法和状态转移方程法。其中,状态转移表法解题思路大致可以概括为:回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码。状态转移方程法的大致思路可以概括为:找最优子结构 - 写状态转移方程 - 将状态转移方程翻译成代码。

三、动态规划实战
1.关于复杂算法问题的解决思路的一些经验和小技巧
当我们拿到一个问题的时候,我们可以先不思考,计算机会如何实现这个问题,而是单纯考虑“人脑”会如何去解决这个问题。人脑比较倾向于思考具象化的、摸得着看得见的东西,不适合思考过于抽象的问题。所以,我们需要把抽象问题具象化。那如何具象化呢?我们可以实例化几个测试数据,通过人脑去分析具体实例的解,然后总结规律,再尝试套用学过的算法,看是否能够解决。
2.除此之外,还有一个非常有效、但也算不上技巧的东西,那就是多练。实际上,等你做多了题目之后,自然就会有感觉,看到问题,立马就能想到能否用动态规划解决,然后直接就可以寻找最优子结构,写出动态规划方程,然后将状态转移方程翻译成代码。

四、四种算法思想对比
1.贪心、分治、回溯、动态规划,这四个算法思想有关的理论知识,大部分都是“后验性”的,也就是说,在解决问题的过程中,我们往往是先想到如何用某个算法思想解决问题,然后才用算法理论知识,去验证这个算法思想解决问题的正确性。
2.贪心、回溯、动态规划可以解决的问题模型类似,都可以抽象成多阶段决策最优解模型。而分治算法则不同于这三者,尽管分治算法也能解决最优问题,但是大部分问题的背景都不适合抽象成多阶段决策模型。
3.大部分动态规划能解决的问题,都可以通过回溯算法来解决,只不过回溯算法解决起来效率比较低,时间复杂度是指数级的。动态规划算法,在执行效率方面,要高很多。但是,并不是所有问题都可以用动态规划来解决。能用动态规划解决的问题,需要满足前面提到的“一个模型三个特征”。此外,尽管执行效率提高了,但是动态规划的空间复杂度也提高了,所以,很多时候,我们会说,动态规划是一种空间换时间的算法思想。
4.在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分割成的子问题相互独立,不能有重复子问题,而动态规划正好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。
5.贪心算法可以认为是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限。它能解决的问题需要满足三个条件,最优子结构、无后效性和贪心选择性。其中,最优子结构、无后效性跟动态规划中的无异。“贪心选择性”的意思是,通过局部最优的选择,能产生全局的最优选择。每一个阶段,我们都选择当前看起来是最优的决策,当所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。

五、动态规划几个必知必会的代码实现
(1)0-1 背包问题
(2)最小路径和:https://leetcode-cn.com/problems/minimum-path-sum/
(3)编程实现莱文斯坦最短编辑距离
(4)编程实现查找两个字符串的最长公共子序列
(5)编程实现一个数据序列的最长递增子序列

参考

《数据结构与算法之美》
王争
前Google工程师

动态规划的一些应用:https://algorithm-visualizer.org/dynamic-programming/bellman-fords-shortest-path

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值