Educational Codeforces Round 51 (Rated for Div. 2) - F. The Shortest Statement (树上距离查询+最短路)

19 篇文章 0 订阅
10 篇文章 0 订阅

http://codeforces.com/contest/1051/problem/F

题意:

给你n个点,m条边。m-n<=20。保证图连通。

问你任意两点的最短距离是多少。

 

POINT:

由图连通可知,这个图是 在生成树的基础上加了m-(n-1)条边。然后问你距离。

在HDU多校做过一道类似的。是不过只增加了一条边。即m=n。那么我们只要考虑两种情况:

1.在树上的距离查询(不用这条边)2.假设这条边连了AB。考虑起点到A(B)+边权+B(A)到终点的距离。

这样取min就是答案。不过那道题还有修改操作,就要用到树链剖分。

 

类推得。这道题是多了m-(n-1)条边。因为没有修改操作。我们可以对这些多余的边所连的点(最多42个点)分别跑一次最短路。这样经过这些多余的边的距离肯定包含在了这多次最短路里面。

然后还有一种情况就是不走这些多余的边。那么就是树上任意两点的距离查询。

记录每个点到根节点的距离。dis(a,b)=dis(a,root)+dis(b,root)-2*dis(lca(a,b),root)。

 

#include <iostream>
#include <stdio.h>
#include <queue>
#include <vector>
#include <math.h>
#include <algorithm>
using namespace std;
#define  LL long long
const int N = 2e5+4;
const LL inf = 0x3f3f3f3f3f3f3f3f;
vector<int>G[N];
vector<LL>W[N];
LL dis[50][N],disRoot[N];
int d[N],fa[N][33],vis[N];
vector<int>P;
void dfs(int u,int pre)
{
	for(int i=1;i<=20;i++){
		fa[u][i]=fa[fa[u][i-1]][i-1];
	}
	for(int i=0;i<G[u].size();i++){
		int v=G[u][i];
		if(v==pre) continue;
		if(vis[v]) P.push_back(u),P.push_back(v);
		else{
			vis[v]=1;
			d[v]=d[u]+1;
			disRoot[v]=disRoot[u]+W[u][i];
			fa[v][0]=u;
			dfs(v,u);
		}
	}

}

int lca(int a,int b)
{
	if(d[a]<d[b]) swap(a, b);
	int dis=d[a]-d[b];
	for(int i=0;i<20;i++){
		if(dis&(1<<i)){
			a=fa[a][i];
		}
	}
	if(a==b) return a;
	for(int i=20;i>=0;i--){
		if(fa[a][i]!=fa[b][i])
			a=fa[a][i],b=fa[b][i];
	}
	return fa[a][0];
}
int n,m;
void spfa(int x)
{
	for(int i=1;i<=n;i++) dis[x][i]=inf,vis[i]=0;
	int s=P[x];
	vis[s]=1;dis[x][s]=0;
	queue<int>q;
	q.push(s);
	while(!q.empty()){
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int i=0;i<G[u].size();i++){
			int v=G[u][i];
			if(dis[x][v]>dis[x][u]+W[u][i]){
				dis[x][v]=dis[x][u]+W[u][i];
				if(vis[v]==0){
					vis[v]=1;
					q.push(v);
				}
			}
		}
	}
}

int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		int u,v;LL w;
		scanf("%d%d%lld",&u,&v,&w);
		G[u].push_back(v);G[v].push_back(u);
		W[u].push_back(w);W[v].push_back(w);
	}
	d[1]=1;vis[1]=1;disRoot[1]=0;
	dfs(1,-1);
	sort(P.begin(),P.end());P.erase(unique(P.begin(),P.end()),P.end());
	for(int i=0;i<P.size();i++){
		spfa(i);
	}
	int q;scanf("%d",&q);
	while(q--){
		int a,b;scanf("%d%d",&a,&b);
		LL ans = disRoot[a]+disRoot[b]-2*disRoot[lca(a,b)];
		for(int i=0;i<P.size();i++){
			ans=min(ans,dis[i][a]+dis[i][b]);
		}
		printf("%lld\n",ans);
	}


	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值