我是来立flag的

写在前面的话(先立个大大的flag)

四年很长,也很短,恍惚间就到了毕业的时候。大四这一年一直想写几篇博客总结一下自己的学习生活,但是苦于不会排版,这事也就搁置了一年。但是想着自己总该留下点什么作为对自己四年大学生活的纪念。

作为信息工程专业的人,最重要的课就是信号与系统了,第一篇博客先谈一下我个人对于卷积的理解,接下来会涉及到傅立叶变换、拉普拉斯变换、数字信号处理等相关问题。当然,作为一名硬件狗,个人也想谈一下电磁场,说一下麦克斯韦方程。

当然,博客中的所有内容都是我个人对于某些问题的理解,作为一个本科生,对于有些问题的理解可能并不那么深刻,其中不免有一些错误,如果你发现了其中的错误,可以在评论中指出。

线性时不变系统与卷积

线性时不变系统

如果系统对于信号f(t)的相应为Tf(t)=y(t),并且满足下面的关系,那么称这个系统为线性时不变系统。
线性
系统对于αf(t)+βg(t)的响应为αTf(t)+βTg(t)

时不变性

系统对于f(tt0)的响应为Tf(tt0)=y(tt0)

经过四年的学习,个人总结出来的一个经验性的规律就是某个性质看起来越简单,那么这个性质越棒,越能够直观的理解。对于任何一个系统而言,具备线性与时不变性能够极大的简化对于系统的分析,这两个性质虽然看起来很简单,但是说起来可能就不那么简单了。

先说线性,系统线性性质暗含了系统对于零输入必须是零输出,像y=kx+b这种系统虽然看起来很简单,但这根本不是线性系统,系统对于0输入不是0输出,它不满足线性。但是如果将Δx 作为系统的输入,Δy 作为系统的输出,系统变为Δy=kΔx,这是一个线性系统。大三时候做温度控制实验的时候,问过能动相关专业的同学关于热力系统传函的问题,才知道他们计算时候与刚才所说的相似,并不是直接计算热量与温度的关系,而是考虑热量差与温差的关系1。考虑这样一个系统,A打了B一巴掌,系统的输入为A出手的力度,输出为B的反应,如果A的力度比较轻,那么B没啥反应,系统输出为0;如果A的力度比较重,A和B接下来就可能要打一架了,这就不是一个线性系统。打B得力度轻B没啥反应,系统0输出,线性系统则要求打B的力度重时候B也没啥反应,然而这是不现实的。

时不变系统顾名思义,即系统的输出与信号什么时间输入没有啥关系,不同时刻输入同一个信号,系统的输出应该是相同的。还是那个打人系统,如果A趁B睡觉的时候打了他一巴掌,B可能没啥反应,但A要趁B清醒时候打他一巴掌,那后果可就严重了,所以这个打人系统也不是一个时不变系统。。

卷积

学过信号与系统的人对卷积肯定不陌生,但是我还是想说一下,在给定输入的情况下,只有线性时不变系统的输出才能用卷积计算!

考虑离散信号的情况,若系统对于δ[n]的响应为h[n],即h[n]为单位冲击响应。利用时不变性,系统对于δ[nm]的响应为h[nm]。对于离散信号x[n],使用δ函数能够将其表示为x[n]=+m=x[m]δ[nm],即信号表示成了使用δ[nm]表示的线性组合,再利用系统的线性性质,输入为一个线性组合,那么输出即为每个h[nm]的输出的线性组合。输出即为:

y[n]=m=+x[m]h[nm]=xh

上面的公式就是大家熟悉的不能再熟悉的卷积公式了,上文也说了卷积公式是怎么来的,要求系统必须满足时不变性与线性即系统是一个线性时不变系统。

通过离散信号的卷积运算通俗的解释一下卷积公式,将输入信号看做为移位不同的δ函数的线性组合,系统的输出就应该是移位不同的单位冲击响应的线性组合(啊啊啊啊啊啊!本来想说的通俗点的,但是语文功底不好,大家将就着看)。

当然,卷积运算是满足交换律的,写成数学形式为:

y[n]=xh=hx=m=+x[nm]h[m]

再换个角度看看上面的卷积公式,对于给定的n,输出信号y[n]是由输入信号决定的,在nm时刻输入信号大小为x[nm],那么这一部分在n时刻应该贡献了x[nm]h[m]大小的输出,对于不同的nm时刻,输入信号都会为n时刻的输出贡献出自己的一份力量,系统又是线性的,那么n时刻最终的输出就是将不同时刻输入信号贡献出的输出加起来就行了,这就是我对上面卷积公式的通俗理解。

关于连续信号的卷积,将离散的求和变成积分就可以了:

x(t)h(t)=+f(τ)h(tτ)dτ=+f(tτ)h(τ)dτ

卷积的另一个牛逼性质

卷积的性质还是挺多的,但是我觉得最牛逼的是这个:

xh=xh

为啥说这个是我觉得最牛逼的性质呢,毕设时候没少接触小波变换,小波变换可以理解为信号与翻转后的小波原子的卷积2 ,如果小波原子足够光滑,高阶导数也很光滑,再结合上面的卷积性质与小波变换的良好的局部化性质,小波变换是可以检测信号高阶导数不连续的位置的!!!,是不是很恐怖。


  1. 这里说的并不一定准确,大家姑且看看。
  2. 其实是等效为母小波经过尺度变换后没有平移,然后翻转。

没有更多推荐了,返回首页