写在前面的话(先立个大大的flag)
四年很长,也很短,恍惚间就到了毕业的时候。大四这一年一直想写几篇博客总结一下自己的学习生活,但是苦于不会排版,这事也就搁置了一年。但是想着自己总该留下点什么作为对自己四年大学生活的纪念。
作为信息工程专业的人,最重要的课就是信号与系统了,第一篇博客先谈一下我个人对于卷积的理解,接下来会涉及到傅立叶变换、拉普拉斯变换、数字信号处理等相关问题。当然,作为一名硬件狗,个人也想谈一下电磁场,说一下麦克斯韦方程。
当然,博客中的所有内容都是我个人对于某些问题的理解,作为一个本科生,对于有些问题的理解可能并不那么深刻,其中不免有一些错误,如果你发现了其中的错误,可以在评论中指出。
线性时不变系统与卷积
线性时不变系统
- 如果系统对于信号
f(t) 的相应为Tf(t)=y(t) ,并且满足下面的关系,那么称这个系统为线性时不变系统。 - 线性
系统对于
αf(t)+βg(t) 的响应为αTf(t)+βTg(t) -
时不变性
系统对于
f(t−t0) 的响应为Tf(t−t0)=y(t−t0)
经过四年的学习,个人总结出来的一个经验性的规律就是某个性质看起来越简单,那么这个性质越棒,越能够直观的理解。对于任何一个系统而言,具备线性与时不变性能够极大的简化对于系统的分析,这两个性质虽然看起来很简单,但是说起来可能就不那么简单了。
先说线性,系统线性性质暗含了系统对于零输入必须是零输出,像
时不变系统顾名思义,即系统的输出与信号什么时间输入没有啥关系,不同时刻输入同一个信号,系统的输出应该是相同的。还是那个打人系统,如果A趁B睡觉的时候打了他一巴掌,B可能没啥反应,但A要趁B清醒时候打他一巴掌,那后果可就严重了,所以这个打人系统也不是一个时不变系统。。
卷积
学过信号与系统的人对卷积肯定不陌生,但是我还是想说一下,在给定输入的情况下,只有线性时不变系统的输出才能用卷积计算!
考虑离散信号的情况,若系统对于
上面的公式就是大家熟悉的不能再熟悉的卷积公式了,上文也说了卷积公式是怎么来的,要求系统必须满足时不变性与线性即系统是一个线性时不变系统。
通过离散信号的卷积运算通俗的解释一下卷积公式,将输入信号看做为移位不同的
当然,卷积运算是满足交换律的,写成数学形式为:
再换个角度看看上面的卷积公式,对于给定的
关于连续信号的卷积,将离散的求和变成积分就可以了:
卷积的另一个牛逼性质
卷积的性质还是挺多的,但是我觉得最牛逼的是这个:
为啥说这个是我觉得最牛逼的性质呢,毕设时候没少接触小波变换,小波变换可以理解为信号与翻转后的小波原子的卷积2 ,如果小波原子足够光滑,高阶导数也很光滑,再结合上面的卷积性质与小波变换的良好的局部化性质,小波变换是可以检测信号高阶导数不连续的位置的!!!,是不是很恐怖。