动态规划之矩阵连乘问题

代码: 

#include "stdafx.h"
#include <iostream>
using namespace std;

int b[1000], m[1000][1000], t[1000][1000];	//数组b存储n个矩阵的阶数下标
void MatrixChain(int n)
{
	for (int i = 1; i <= n; i++) m[i][i] = 0;	//初始化
	for (int r = 2; r <= n; r++)
	{
		for (int i = 1; i <= n - r + 1; i++)
		{
			int j = i + r - 1;
			m[i][j] = m[i + 1][j] + b[i - 1] * b[i] * b[j];
			t[i][j] = i;
			for (int k = i + 1; k < j; k++)
			{
				int l = m[i][k] + m[k + 1][j] + b[i - 1] * b[k] * b[j];
				if (l < m[i][j])
				{
					m[i][j] = l;         //l:最小乘法次数
					t[i][j] = k;		//k:断开位置
				}
			}
		}
	}
}

void print(int i, int j)
{
	if (i == j)
	{
		cout << "A" << i;
	}
	else if (i == j - 1)
	{
		cout << "(A" << i << "A" << j << ")";
	}
	else
	{
		cout << "(";
		print(i, t[i][j]);
		print(t[i][j] + 1, j);
		cout << ")";
	}
}

int main()
{
	int n;
	cin >> n;
	for (int i = 0; i <= n; i++)
	{
		cin >> b[i];
	}
	MatrixChain(n);
	print(1,n);
	cout << endl;
    return 0;
}

 

 

测试结果:

小结:

(1)动态规划的基本思想:它是一个自底向上的过长,求得的是整体最优解。

(2)矩阵连乘问题的原理与目的:

       原理: 矩阵乘法的基本性质之一——结合律,例:(AB)C=A(BC)

                  就会出现这样的一种可能:某种情况下的结合,使得计算过程中乘法次数最少。

       目的:找出乘法次数最少的情况,并以加最优括号的形式显示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值