信息安全数学基础 解二元一次方程

利用欧几里得除法计算出最大公约数
再反推出x和y的特解

求 ax+by=c 的**整数**解
#include <iostream>

using namespace std;

void gcd(int a, int b, int &x, int &y, int &g)
{
    int x1 = 1, y1 = 0;
    int x0 = 0, y0 = 1;
    int r,q;
    while(1)
    {
        q = a / b;
        r = a - b * q;
        x = x1 - x0 * q;
        y = y1 - y0 * q;
        if (b % r == 0)
            break;
        a = b, b = r;
        x1 = x0, x0 = x;
        y1 = y0, y0 = y;
    }
    g = r;

}

int main()
{
    int x,y,g;
    int a , b, c;
    cin>>a>>b>>c;
    if (a < b)				//提高程序健壮性
    {
        int i = a;
        a = b;
        b = i;
    }
    gcd(a,b,x,y,g);		//这一步求出来的x和y  为ax+by=(a,b)的整数解
    if (c % g != 0)		//因为若方程ax+by=c有整数解 (a,b)|c
    {
        cout<<"无整数解"<<endl;
        return 0;
    }
    x = x*c/g;			//这一步求的是ax+by=c 特解
    y = y*c/g;
    cout<<"x = "<<x<<" + "<<b/g<<" * t"<<endl; //通解
    cout<<"y = "<<y<<" - "<<a/g<<" * t"<<endl;
    cout<<"t ∈ Z"<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值