二叉树——根据 中序 和 层序 建树,超详讲解。

模板题传送

背景:

树和二叉树基本上都有先序、中序、后序、按层遍历等遍历顺序,给定中序和其它一种遍历的序列就可以确定一棵二叉树的结构。

假定一棵二叉树一个结点用一个字符描述,现在给出中序和按层遍历的字符串,请构建这棵二叉树。

正文:

总体思路:与根据先序和中序建树相类似,都是由递归来实现。
  • 根据层序遍历的特点,层序序列中第一个元素就是根节点root
  • 确定该节点在中序序列中的位置。则该位置左边的都是左子树,右边都是右子树。
  • 左子树的根节点就是root的左孩子,右子树的根节点就是root的右孩子。
  • 递归到左子树和右子树。
  • 一直递归,便确定了每个节点的左右孩子。

大体思路明白了,如何具体实现呢?

1、如何确定根节点?

该(分)中序序列的第一个在总的先序序列中出现的节点就是根节点。

2、如何确定根节点在中序序列中的位置?

在输入中序序列的时候,开一个map数组,map[i]就是记录了节点i在中序序列中的位置。

3、递归到左右子树是什么意思?如何实现呢?

挑出左右子树的中序和层序序列,重复上述思路中的过程,最终返回根节点。( 其根节点是其父树的左(右)孩子。)

好了,接下来就交给码哥吧:

struct T{
	int l,r;
}a[N];

int build(int il,int ir) //##核心函数:递归实现寻找每个节点的左右孩子
{
	int root,k;
	for(int i=1;i<=n;i++){ //中序数列il到ir位置的数中,第一个在层序数列中出现的就是根节点 
		if(mp[floor[i]]>=il&&mp[floor[i]]<=ir){
			root=floor[i];
			break;
		}
	}
	k=mp[root];
	
	//k>il,根节点左边有位置,说明有左子树
	if(k>il) a[root].l=build(il,k-1); //中序数列中根节点root位置左边的是左子树 
	if(k<ir) a[root].r=build(k+1,ir);
	
	return root; //返回的是根节点!(作为其父树的左孩子或者右孩子)
}

void print(int x) //先序输出
{
	cout<<x<<" ";
	if(a[x].l) print(a[x].l);
	if(a[x].r) print(a[x].r);
}

int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>in[i]; //输入中序序列
		mp[in[i]]=i; //记录位置
	}
	for(int i=1;i<=n;i++) cin>>floor[i]; //输入层序序列
	
	build(1,n); //建树
	print(floor[1]); //先序输出
	return 0;
}
感觉这个比 根据先序和中序构建二叉树 稍简单哦~
如果有哪里不对或者不明白的地方欢迎留言评论呀~
### 构建层序遍历的过程 在后序遍历列中,根节点总是位于最后的位置,在中序遍历列中,该根节点将整个列划分为左右两个部分,分别代表左子树右子树[^4]。 为了从后序遍历序遍历结果推导出层序遍历的结果,可以遵循以下逻辑: #### 识别根节点并划分左右子树 由于后序遍历的特点是根节点始终处于列末端,因此可以通过查找此节点在中序遍历中的位置来区分其对应的左右子树。一旦找到了这个分界点,则可以根据它左边的部分作为左子树的中序遍历,右边的部分作为右子树的中序遍历。 #### 使用递归来处理子树 对于每一个新找到的子树(无论是左还是右),重复上述过程直到所有的节点都被处理完毕。每次迭代时更新当前考虑范围内的起始索引以及终止索引以便于定位新的根节点及其相应的子树边界。 #### 实现代码示例 下面是一个Python函数用于根据给定的后序遍历列表返回二叉树对象,并进一步获取层序遍历结果: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def build_tree(postorder, inorder): if not postorder or not inorder: return None root_val = postorder[-1] index = inorder.index(root_val) root = TreeNode(root_val) # 左子树 root.left = build_tree(postorder[:index], inorder[:index]) # 右子树 root.right = build_tree(postorder[index:-1], inorder[index + 1:]) return root def level_order_traversal(root): result = [] queue = [root] while queue: node = queue.pop(0) if node is not None: result.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) return result postorder_example = [9, 15, 7, 20, 3] inorder_example = [9, 3, 15, 20, 7] tree_root = build_tree(postorder_example, inorder_example) level_order_result = level_order_traversal(tree_root) print(level_order_result) ``` 这段程首先定义了一个`TreeNode`类表示单个结点的数据结构,接着实现了`build_tree()`函数用来依据输入参数创建完整的二叉树实例。之后利用辅助性的`level_order_traversal()`完成最终所需的层次遍历操作。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值