倒序并查集 —— 逆向思维

题目模型:

给出n个点,m条边。
k次操作,每次删掉一个点及与其相连的边,给出若干个数对(x,y),问 点x 和 点y 是否在同一连通块中?


暴力做法:
对于每个数对都跑一遍bfs,超时。

需要用并查集。
如果按照给出的顺序删点的话,这个点倒是删了,那已经合并的连通块如何更新呢?就没法搞了。

想象一下两种状态
一种状态为:正着来删点。原来所有点都没删,然后进行过k-1次操作之后,仅剩最后一个删点没有删,询问两个点x,y是否在同一连通块中。
另一种状态为:倒着来加点。连边时,删点不要参与连边。然后加入最后一个操作的删点,询问两个点x,y是否在同一连通块中。

我们可以发现,这两种状态的结果是相同的。

最后剩两个删点 和 只添加最后两个删点 这两种状态的结果也是相同的。

既然正着来和倒着来结果相同,所以可以用倒序的思想,将所有询问保存下来,从后往前处理
连边时,删点不参与。
然后从后往前将操作数中的删点加入到集合中,合并原本与其相邻的点(注意不要连接前面的还没加到的删点),然后进行对应的查询操作


例题1、7-4 疫情防控 (30 分)

题意:

初始给出一个 n 个点 m 条边的无向图,一共 K 次操作。
对于第 i 次操作:
  删除一个点,与其相连的所有边相应删除,然后给出 qi 次询问,x 和 y 是否可达?

Code:
#include<bits/stdc++.h>
using namespace std;

map<int,int> mp;

/*
	初始给出一个 n 个点 m 条边的无向图。
	第 i 次操作:
		删除一个点,与其相连的所有边相应删除,然后给出 qi 次询问,x 和 y 是否可达? 
	
	集合合并之后再拆开不好处理,那么就反着来,处理之后再合并。
	 
	逆序处理,将需要删除的点别慌连边,将其相邻点记录。
	将所有操作记录,从后往前处理:
		判断两点是否可达后,将该点插入图中,与相邻点合并。
*/

const int N = 200010, mod = 1e9+7;
int T, n, m;
PII a[N];
int b[N], pre[N], ans[N];
vector<PII> v[N];
vector<int> e[N];

int find(int x){
	if(pre[x] != x) pre[x] = find(pre[x]);
	return pre[x];
}

signed main(){
	Ios;
	int k;
	cin>>n>>m>>k;
	for(int i=1;i<=n;i++) pre[i] = i;
	
	for(int i=1;i<=m;i++) cin>>a[i].fi>>a[i].se; //初始连边 
	
	for(int i=1;i<=k;i++)
	{
		int x, cnt;
		cin>>x>>cnt;
		b[i] = x;
		mp[x] = 1;
		while(cnt--) //对于此次删除的询问 
		{
			int a, b;cin>>a>>b;
			v[i].pb({a, b});
		}
	}
	
	for(int i=1;i<=m;i++)
	{
		int x = a[i].fi, y = a[i].se;
		if(mp[x] || mp[y]) //如果后面要删掉,就别连边,记录每个删点的邻点 
		{
			if(mp[x]) e[x].pb(y);
			if(mp[y]) e[y].pb(x); //这里不能用else 
		}
		else pre[find(x)] = find(y);
	}
	
	for(int i=k;i>=1;i--) //从后往前判断 
	{
		for(auto it:v[i]) //对于此次删点的询问 
		{
			int x = it.fi, y = it.se;
			if(find(x) != find(y)) ans[i]++;
		}
		
		for(auto tx:e[b[i]]) //把当前点加上,和邻点合并 
		{
			if(mp[tx]) continue; //保证邻点没被删掉 
			pre[find(tx)] = find(b[i]);
		}
		mp[b[i]] = 0; //当前点的删除标记消除 
	}
	
	for(int i=1;i<=k;i++) cout<<ans[i]<<'\n';
	
	return 0;
}

例题2、[JSOI2008]星球大战

题意:

每次删除一个点,求当前连通块个数。

Code:

/*
	如何计算加上一个点几条边之后,连通块的个数呢?
	判断是否有一条边连接的连接的两点不在同一连通块,加上这条边之后,两个连通块合并,
连通块的个数-1。
*/

const int N = 400010, mod = 1e9+7;
int T, n, m;
PII a[N];
int b[N],pre[N],ans[N];
vector<int> v[N];

int find(int x){
	int t=x;
	while(pre[x]!=x) x=pre[x];
	pre[t]=x;
	return x;
}

int main(){
	cin>>n>>m;
	for(int i=1;i<=m;i++){
		cin>>a[i].first>>a[i].second;
	}
	
	int k;cin>>k;
	for(int i=1;i<=k;i++){
		cin>>b[i];mp[b[i]]=1;
	}
	
	for(int i=0;i<n;i++) pre[i]=i;
	
	for(int i=1;i<=m;i++){
		int x=a[i].first,y=a[i].second;
		if(mp[x]||mp[y]){
			if(mp[x]) v[x].push_back(y);
			if(mp[y]) v[y].push_back(x);
		}
		else pre[find(x)]=find(y);
	}
	
	int cnt=0;
	for(int i=0;i<n;i++){
		if(!f[find(i)]) f[find(i)]=1,cnt++;
	}
	
	ans[k+1]=cnt;
	for(int i=k;i>=1;i--)
	{
		int x=b[i];
		
		for(int j=0;j<v[x].size();j++){
			int y=v[x][j];
			if(!mp[y]){
				if(find(x)!=find(y)) f[find(x)]=0,cnt--;
				pre[find(x)]=find(y);
			}
		}
		ans[i]=cnt;
		
		mp[b[i]]=0;
	}
	
	for(int i=1;i<=k+1;i++) cout<<ans[i]-i+1<<endl;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值