并查集leetcode经典逆序思维

这篇博客介绍了如何利用并查集解决803题——砖块消除问题。当砖块被消除时,受影响的砖块会掉落。通过逆向思维,将砖块依次补回,计算每一步新增的连通分量,即可得出掉落的砖块数。并查集在此过程中用于合并连通分量,帮助跟踪砖块之间的连接状态。
摘要由CSDN通过智能技术生成

题目

有一个 m x n 的二元网格,其中 1 表示砖块,0 表示空白。砖块 稳定(不会掉落)的前提是:

一块砖直接连接到网格的顶部,或者
至少有一块相邻(4 个方向之一)砖块 稳定 不会掉落时
给你一个数组 hits ,这是需要依次消除砖块的位置。每当消除 hits[i] = (rowi, coli) 位置上的砖块时,对应位置的砖块(若存在)会消失,然后其他的砖块可能因为这一消除操作而掉落。一旦砖块掉落,它会立即从网格中消失(即,它不会落在其他稳定的砖块上)。

返回一个数组 result ,其中 result[i] 表示第 i 次消除操作对应掉落的砖块数目。

样例

输入:grid = [[1,0,0,0],[1,1,1,0]], hits = [[1,0]]
输出:[2]
解释:
网格开始为:
[[1,0,0,0],
 [1,1,1,0]]
消除 (1,0) 处加粗的砖块,得到网格:
[[1,0,0,0]
 [0,1,1,0]]
两个加粗的砖不再稳定,因为它们不再与顶部相连,也不再与另一个稳定的砖相邻,因此它们将掉落。得到网格:
[[1,0,0,0],
 [0,0,0,0]]
因此,结果为 [2] 。

并查集

消除一个砖块的效果是:一个连通分量被分成了两个连通分量;
并查集的作用是:把两个连通分量合并成一个连通分量。
提示我们这个问题需要 反向 思考。即考虑:补上被击碎的砖块以后,有多少个砖块因为这个补上的这个砖块而与屋顶的砖块相连。每一次击碎一个砖块,因击碎砖块而消失的砖块只会越来越少。因此可以按照数组 hits 的顺序 逆序地 把这些砖块依次补上。如图所示:

当最后一块砖块补上的时候,就恰好可以恢复成刚开始的时候整个二维表格的样子。

作者:LeetCode
链接:https://leetcode-cn.com/problems/bricks-falling-when-hit/solution/803-da-zhuan-kuai-by-leetcode-r5kf/

class Solution {
    int cols;
    int rows;
    private final int[][] DIRECTIONS = {{0,1},{1,0},{-1,0},{0,-1}};
    public int[] hitBricks(int[][] grid, int[][] hits) {
        this.cols = grid[0].length;
        this.rows = grid.length;

        int[][] copy = new int[rows][cols];
        int size = rows * cols;
        UnionFind un = new UnionFind(size + 1);
        // 原数组copy
        for(int i = 0;i < rows;i++){
            for(int j = 0;j < cols;j++){
                copy[i][j] = grid[i][j];
            }
        }

        for(int[] hit : hits){
            int x = hit[0];
            int y = hit[1];
            copy[x][y] = 0;
        }

        for(int i = 0; i < cols; i++){
            if(copy[0][i] == 1){
                un.union(i,size);
            }
        }

        for(int i = 1; i < rows; i++){
            for(int j = 0; j < cols; j++){
                if(copy[i][j] == 1){
                    // 保证上方也是方块
                    if(copy[i - 1][j] == 1){
                        un.union(getIndex(i,j),getIndex(i - 1,j));
                    }
                    // 如果左边是方块
                    if(j > 0 && copy[i][j - 1] == 1){
                        un.union(getIndex(i,j),getIndex(i,j - 1));
                    }
                }
            }
        }

        int[] res = new int[hits.length];
        for(int i = hits.length - 1; i >= 0; i--){
            int x = hits[i][0];
            int y = hits[i][1];
            
            if(grid[x][y] == 0){
                continue;
            }

            // 补回之前的
            int origin = un.getSize(size);

            // 如果是顶层
            if(x == 0){
                un.union(y,size);
            }

            for(int[] direction : DIRECTIONS){
                int newX = x + direction[0];
                int newY = y + direction[1];

                if(inGraph(newX,newY) && copy[newX][newY] == 1){
                    un.union(getIndex(newX,newY),getIndex(x,y));
                }
            }

            // 得到现在的
            int current = un.getSize(size);

            res[i] = Math.max(0,current - origin - 1);

            // 补上砖块
            copy[x][y] = 1;
        }
        return res;
    }

    // 判断是否在图中
    public boolean inGraph(int i,int j){
        if(i < 0 || j < 0 || i >= rows || j >= cols){
            return false;
        }
        return true;
    }

    // 得到二维数组转为一维数组位置
    public int getIndex(int i,int j){
        return i * cols + j;
    }

    private class UnionFind{
        int size;
        int f[];
        int rank[];

        public UnionFind(int size){
            this.size = size;
            f = new int[size];
            rank = new int[size];
            Arrays.fill(rank,1);
            for(int i = 0;i < size;i++){
                f[i] = i;
            }
        }

        public int find(int x){
            return f[x] = f[x] == x ? x : find(f[x]);
        }

        public void union(int u,int v){
            u = find(u);
            v = find(v);
            if(u == v){
                return;
            }
            if(rank[u] < rank[v]){
                int temp = u;
                u = v;
                v = temp;
            }
            rank[u] += rank[v];
            f[v] = u;
        }

        public int getSize(int x){
           x = find(x);
           return rank[x];
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值