CF1609C. Complex Market Analysis(质数)

Linking


题意:

给定一个长度为 n 的数列和数字 m,判断有多少个数对 ( i , k ) (i,k) (i,k) 满足:
a [ i ] ∗ a [ i + m ] ∗ a [ i + 2 m ] ∗ . . . ∗ a [ i + k m ] a[i]*a[i+m]*a[i+2m]*...*a[i+km] a[i]a[i+m]a[i+2m]...a[i+km]为质数。

思路:

若干个数相乘为质数,那么只有一个数为质数,其余数都为1。
所以

  • 对于 a[i] 为质数,就需要计算后面连续的 a[i+km] 为1的个数。
  • 对于 a[i] 为1,那么需要找到后面连续的 a[i+km] 的个数,保证 a[i+km] 中只有一个质数。

那么
如果 a[i] 为质数,那么其后面的满足的连续的1可以作贡献,同时前面连续的1也可以作贡献。
假设该质数位置前面连续的1为 cnt1 个,后面连续的1为 cnt2 个,那么通过这个质数得到的数对个数就为 c n t 2 + c n t 1 ∗ ( c n t 2 + 1 ) cnt2 + cnt1*(cnt2+1) cnt2+cnt1(cnt2+1)

Code:

const int N = 1000020, mod = 1e9+7;
int T, n, m;
int a[N], prim[N];
int f[N];

void init() //埃式筛
{
	f[0] = f[1] = 1;
	n=1e6+1;
	for(int i=2;i<=n;i++)
	{
		if(f[i]) continue;
		else
		{
			for(int j=i+i;j<=n;j+=i) f[j]=1;
		}
	}
}

signed main(){
	Ios;
	init();
	
	cin>>T;
	while(T--)
	{
		cin>>n>>m;
		for(int i=1;i<=n;i++) cin>>a[i];
		
		int ans=0;
		for(int i=1;i<=n;i++)
		{
			int cnt1=0, cnt2=0;
			if(!f[a[i]])
			{
				for(int j=i+m;j<=n;j+=m){
					if(a[j]==1) cnt2++;
					else break;
				}
				for(int j=i-m;j>=1;j-=m){
					if(a[j]==1) cnt1++;
					else break;
				}
			}
			ans+=cnt2+cnt1*(cnt2+1);
		}
		cout<<ans<<endl;
	}
	
	return 0;
}

关键是要想到这个性质:
若干个数相乘为质数,那么其中只有一个质数,其余都是1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值