ccpc威海 - L. Clock Master ——lcm,分组背包

10 篇文章 0 订阅
题目链接
题意:

T次询问,每次询问:
给定一个数 n,选择 1~n 中的若干个数,使得总和不超过 n,并且最小公倍数最大。
求出能够得到的最小公倍数最大值,将答案取 l o g log log 后输出。
( 1 ≤ T , n ≤ 30000 ) (1≤T, n≤30000) (1T,n30000)

思路:

选择若干个数使得最小公倍数最大,那么选择的这些数一定是互质的
如果不互质的话,那么只有每个质数的最大幂次对答案有贡献,所以就不如只拿那个质数的最大幂次。

既然选择的数都是互质的,也就是说对于每个质数只选择其的一个次幂数,那么不妨枚举所有的质数,把其所有的幂次数放到一个组中,每组只选择一个物品
每个数的体积和价值都为本身,求总体积不超过 n 的最大价值乘积。

定义状态:
dp[i]:总体积不超过 i 的最大价值乘积。

那么状态转移:

for(int i=1;i<=cnt;i++) //遍历所有组
{
	for(int j=n;j>=1;j--) //优化掉一维,反向遍历体积
	{
		for(int k=prim[i];k<=n;k*=prim[i]) //遍历每组的所有物品
		{
			dp[j] = max(dp[j], dp[j-k]*k);
		}
	}
}
cout << log(dp[n]);

注意到题目中说的,最后将答案取 log 后输出,说明运算过程中已经存不下了。类似于取模一样,要在运算过程中进行取 log 处理。
那么如何在运算过程中取 log 和最终的乘积取 log 相同呢?

由 log 的运算性质:
log ⁡ a ( M ∗ N ) = log ⁡ a M + log ⁡ a N \log _{a}(M*N)=\log _{a} M+\log _{a} N loga(MN)=logaM+logaN
log ⁡ a ( M / N ) = log ⁡ a M − log ⁡ a N \log _{a}(M / N)=\log _{a} M-\log _{a} N loga(M/N)=logaMlogaN
log ⁡ a N n = n log ⁡ a N \log _{a} N^{n}=n \log _{a} N logaNn=nlogaN
可知,最终的乘积取 log 等价于取 log 后相加

所以状态更新就可以转为:dp[j] = max(dp[j], dp[j-k] + log(k));
此时,dp[j] 表示的是取 log 之后的值,最后直接输出 dp[n]

但是 math 库里的 log 函数时间复杂度有点高,最多需要对 30000 个数取 log,防止重复计算,可以先预处理出来。

Code:
#include<bits/stdc++.h>
using namespace std;

const int N = 200010, mod = 1e9+7;
int T, n, m;
int a[N], f[N], prim[N];
int cnt;
double dp[N], Log[N];

void Prim()
{
	for(int i=2;i<=n;i++)
	{
		if(!f[i]) prim[++cnt] = i;
		for(int j=1;prim[j] <= n/i;j++)
		{
			f[prim[j] * i] = 1;
			if(i % prim[j] == 0) break;
		}
	}
}

signed main(){
//	Ios;
	
	n = 30000;
	Prim();
	
	for(int i=1;i<=n;i++) Log[i] = log(i);
	
	for(int i=1;i<=cnt;i++)
	{
		for(int j=n;j>=1;j--)
		{
			for(int k = prim[i]; k<=n; k*=prim[i])
			{
				if(j>=k) dp[j] = max(dp[j], dp[j-k] + Log[k]);
			}
		}
	}
	
	scanf("%lld", &T);
	while(T--)
	{
		int x;scanf("%lld", &x);
		printf("%.10f\n", dp[x]);
	}
	
	return 0;
}

变式:

如果将题目中的不超过 n 改为 恰好为 n,那么是不是像背包一样:

  • 将状态定义为恰好;
  • 所有状态初始化为负无穷;
  • 最后直接输出 dp[n]

在这道题目中并不是!
是因为这道题目固有的性质:即便是选择的最优物品总和还不到 n,那么可以多拿几个 1 凑成 n。
假设最优物品总和为 m (m < n),那么可以拿 n-m 个 1,这样最小公倍数没有变化,同时满足了总和为 n,还能得到比 dp[n] 更好的答案 dp[m]
所以,这种情况下,还要从前往后遍历一遍,取最大值。


经验:

主要是要想到 只用每个质数的某个次幂数相乘使得最小公倍数最大。
同时了解最终答案取 log 时,中间过程的处理方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值