CCPC 2021哈尔滨 - I. Power and Zero(二进制,思维),E. Power and Modulo(思维)

这篇博客探讨了在信息技术领域中,如何利用数学和算法解决实际问题。通过两个实例,展示了如何运用二进制操作减少数列元素以及判断二进制数模运算的独特性。文章强调了在处理大规模数据时,高效算法的重要性,并提供了相应的代码实现。
摘要由CSDN通过智能技术生成
Linking

题意:
给定一个数列 A 1 , A 2 , ⋯ , A n A_1,A_2,⋯,A_n A1,A2,,An,每次操作可以选择若干位置构成一个集合 B 1 , B 2 , ⋯ , B m ( B i ∈ 1 , 2 , ⋯ , n ) B_1,B_2,⋯,B_m(B_i∈{1,2,⋯,n}) B1,B2,,Bm(Bi1,2,,n),每个位置 A B i A_{B_i} ABi 减少 2 i − 1 2^{i-1} 2i1。其中, B i , B j Bi,Bj Bi,Bj 可以为同一位置。
问,最少多少次操作能将数列中的所有值都变为 0 ?
  ( 1 ≤ n ≤ 1 0 5 ,   1 ≤ A i ≤ 1 0 9 ) \,(1\le n \le 10^5,\,1\le A_i \le 10^9) (1n105,1Ai109)

样例:

3
5
1 2 3 4 5
2
1 4
1
7
3
3
1

思路:
每次操作都可以使若干值分别减去 1, 2, 4, 8...,而对于一次操作来说,可以使得一个位置既减去 2 i {2^i} 2i,又减去 2 j {2^j} 2j,所以需要想到把所有二进制数从一个数中分离出来。

  • 每次操作都要从 1 开始,所以为了所有的二进制数都要被减去,需要使得二进制数个数从低位到高位递减。
  • 而为了使得操作次数最少,就要二进制数1的个数最少。

从后往前遍历,如果发现当前位置大于前一个位置了,就匀到前一个位置些(匀出的个数*=2),以保证前一个位置个数 >= 当前位置个数。
进行若干遍此操作,便能保证低位到高位递减,同时 1 的个数最小化。

Code

#include<bits/stdc++.h>
using namespace std;

const int N = 200010, mod = 1e9+7;
int T, n, m;
int a[N], f[N];
int cnt[N];

signed main(){
	cin >> T;
	while(T--)
	{
		cin >> n;
		
		for(int i=0;i<32;i++) cnt[i] = 0;
		
		for(int i=1;i<=n;i++)
		{
			int x; cin >> x;
			
			bitset<33> st(x);
			for(int j=0;j<33;j++)
			{
				if(st[j]) cnt[j] ++;
			}
		}
		
		int flag = 1;
		while(flag)
		{
			flag = 0;
			
			for(int i=32;i>0;i--)
			{
				if(cnt[i] > cnt[i-1])
				{
					flag = 1;
					int cha = cnt[i] - cnt[i-1];
					if(cha % 3 == 0)
						cnt[i-1] += cha/3*2, cnt[i] -= cha/3;
					else
						cnt[i-1] += (cha/3+1)*2, cnt[i] -= cha/3+1;
				}
			}
		}
		cout << cnt[0] << endl;
	}
	
	return 0;
}

E. Power and Modulo

题意
给定 n 个数,依次是 n 个2进制数 %M 得到的。
判断 M 是否唯一。
n   ( 1 ≤ n ≤ 1 0 5 ) ,   A 1 , A 2 , ⋯   , A n   ( 0 ≤ A i ≤ 1 0 9 ) n\,(1\le n \le 10^5),\ A_1, A_2, \cdots, A_n \,(0 \le A_i \le 10^9) n(1n105), A1,A2,,An(0Ai109)

思路
虽然 n 很大,但是 Ai 最大只有 1e9,所以当 n>32 时一定能找到取模的值。
首先找到第一个和二进制数不相等的位置,那么两数之差便是 M。

需要注意的是,当找到 M 后应直接break,重新从前往后遍历所有位置判断是否满足二进制数取模 M(因为可能后面找到 M 后,前面出现的数可能比 M 大,那么这种情况下数列就是不合法的,也找不到对应的 M)。

对于两个数相乘取模,先相乘再取模 与 先取模再相乘 是相等的。
所以找到 M 后,二进制数 x 就可以不断 乘2 之后取模,不会爆 long long。

Code

#include<bits/stdc++.h>
using namespace std;

#define int long long

const int N = 200010, mod = 1e9+7;
int T, n, m;
int a[N];

signed main(){
	cin >> T;
	while(T--)
	{
		cin >> n;
		int x = 1, flag = 0, ans = 0;
		
		for(int i=1;i<=n;i++) cin >> a[i];
		
		for(int i=1;i<=n;i++)
		{
			if(i!=1) x *= 2;
			if(a[i] != x){
				flag = x - a[i];
				break;
			}
		}
		
		if(flag)
		{
			x = 1;
			for(int i=2;i<=n;i++)
			{
				if(i!=1) x = x*2; //注意这里分开操作
				x %= flag; //当i=1时x=1,也要对flag取模
				if(a[i] != x){
					ans = -1;
					break;
				}
			}
		}
		
		if(ans == -1 || !flag) cout << -1 << endl;
		else cout << flag << endl;
	}
	
	return 0;
}

坑点太多了。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值