C. Travelling Salesman and Special Numbers
题意
给定一个数 n,问 1 - n 中一共有多少数能够经过 m 次下面的转换变为 1?
- 对于一个数 x,如果其对应二进制一共有 k 位为 1,那么 x 变为 k。
(
1
≤
n
<
2
1000
,
0
≤
m
≤
1000
)
(1 ≤ n < 2^{1000},\ 0 ≤ m ≤ 1000)
(1 ≤ n < 21000, 0 ≤ m ≤ 1000)
n
给出无前导零的二进制。
n\ 给出无前导零的二进制。
n 给出无前导零的二进制。
思路
虽然 n 很大,但是再大的数执行一次转换之后都小于 1000 了。
假设执行过一次操作变为 x,x 经过 k 次操作变为了1,那么 n 就要执行 k+1 次操作变为1。
所以可以先暴力求出 1-1000 中所有数分别需要多少次转换变为1,假设一个数 x 经过 k 次操作变为1,那么如果一个数经过 k+1 次操作变为1,其二进制中1的个数就为 x。
对于每个操作次数 k,提前存储其对应的原数二进制表达中 1 的个数。
例如:如果操作次数为 2,那么原数二进制有就应该有 2 或 4 或 8 或 16 … 个 1。
现在给定了 操作次数为 m,我们需要根据给出的 n 的二进制表达找到 1-n 中一共有多少数满足其二进制有 v[0], v[1], v[2]… 个 1。
对于 n 的二进制每一位 1 来说,如果这一位 1 变为 0 了,那么修改过的数无论后面所有位是 0 是 1,都比原来的 n 小。假设前面位置一共有 cnt 个1,后面还有 left 个位置,那么就可以从后面的所有位置中选取 v[i] - cnt 个 和 cnt 组成一共 v[i] 个1。
遍历所有 1 的位置,对于每个位置都遍历需要的 1 的个数,求组合数累加。
int cnt = 0;
for(int i=1;i<=n;i++)
{
if(a[i] != '1') continue;
for(int x : vv)
{
int left = n - i;
if(cnt > x) continue;
if(left < x-cnt) continue;
ans = (ans + C[left][x-cnt]) % mod;
}
cnt ++;
}
需要注意的细节:
- 上面是判断的 1~n-1 的数,n 本身的 1 的个数还要判断是否是需要满足的 1 的个数,如果是,ans ++;
- 当操作数为 1 时,需要满足二进制中有 1 个 1,但是如果这个数是 1 的话,其操作数应该为 0,需要删掉原数为 1 的情况;
- 当操作数为 0 时,原数为 1,n ≥1 一定满足,答案一定为 1。
Code
#include<bits/stdc++.h>
using namespace std;
#define Ios ios::sync_with_stdio(false),cin.tie(0)
#define int long long
const int N = 200010, mod = 1e9+7;
int T, n, m;
char a[N];
vector<int> v[20];
int C[1010][1010];
void init()
{
for(int i=1;i<1000;i++)
{
int x = i;
int cnt = 0;
while(x != 1)
{
cnt ++;
bitset<12> f(x);
x = f.count();
}
v[cnt+1].push_back(i);
}
C[0][0] = 1;
for(int i=1;i<=1000;i++)
{
C[i][0] = 1;
for(int j=1;j<=i;j++)
{
C[i][j] = C[i-1][j-1] + C[i-1][j];
C[i][j] %= mod;
}
}
}
signed main(){
Ios;
init();
cin >> a+1;
n = strlen(a+1);
cin >> m;
if(m > 5){
cout << 0; return 0;
}
if(m == 1 && n == 1){
cout << 0; return 0;
}
if(m == 0){
cout << 1; return 0;
}
vector<int> vv = v[m];
int ans = 0;
if(m == 1) ans --;
int t = 0;
for(int i=1;i<=n;i++) if(a[i] == '1') t++;
for(int x : vv) if(x == t) ans ++;
int cnt = 0;
for(int i=1;i<=n;i++)
{
if(a[i] != '1') continue;
for(int x : vv)
{
int left = n - i;
if(cnt > x) continue;
if(left < x-cnt) continue;
ans = (ans + C[left][x-cnt]) % mod;
}
cnt ++;
}
cout << ans;
return 0;
}