传送门:codeforces 914C
题目大意:
定义一种 reduce操作为将一个数用其二进制下 1 的个数代替。给定一个二进制数 n,问小于等于 n的数中,需要进行 k次 reduce操作才能变为 1的数有多少个? 例如:7 -> 3 -> 2 -> 1 ,需要 3步。
思路:
首先观察到 n 的范围为: 1 <= n <= 2^1000 所以,n 经过一次操作,会变成范围在 [ 1 , 1000 ] 以内的数,再操作一次会变成 [ 1 , 10 ] 以内的数(因为2^10 = 1024)。而 10 以内的数最多需要操作 3 次会变成 1。 所以我们可以缩小范围了,当 k > 5的时候结果都是 0 。因为大于 5 步操作才能到 1 的数在给定范围内不存在。
再来看几个特殊情况, k = 0 时,只有 1 满足条件;当 k= 1 时,结果是 len-1 (注意 1 不符合要求),其中 len是二进制数 n 的长度。
所以我们现在需要解决的是求小于等于 n 的数中有多少个数经过 k 次操作后会变成 1。由于数太大,暴力枚举不可能。我们还可以再把问题转换一下:如果我们知道 [ 1 , 1000 ] 中每个数变成 1 需要的操作步数,由于 [ 1001 , 2^1000 ] 范围内的数经过一步会变成 [ 1 , 1000 ],我们就可以找 [ 1 , 1000 ] 中操作步数为 k-1 的数 num,然后确定小于等于 n 的二进制数中有 num 个 1 的数有多少个,并且累加即可。
再进一步,小于等于 n 的二进制数中有 num 个 1 的数有多少个呢?我们可以用动态规划来做,设 dp[i][j] 表示在小于等于 n 的高 i 位二进制数中 1 的个数为 j 的有多少个。从最高位开始处理,可以得到一下公式:当 n 的当前位 now 为 1 时,如果当前位不设为 1,则需要在剩下的 len-now 位中取 num 个 1,结果为 C(len-now , num) ,C 为组合数。如果当前位设为 1,则需要在剩下的 len-now 位中取 num-1 个 1,结果为 dp[len-now][num-1]。如果当前位为 0 时,不可设为 1,否则可能会大于给定的 n,需要在剩下的 len-now 位中取 num-1 个 1,结果为 dp[len-now][num-1].
为了方便我用整数数组 a 逆序存储了 n 的每一位。下标从 1 开始,所以以上公式可以改写为:当当前位为 1时,dp[i][j]=(dp[i-1][j-1]+c[i-1][j])%mod; 当当前位为 0 时,dp[i][j]=dp[i-1][j]%mod; 最终结果就是 dp[len][num].
代码:
#include<stdio.h>
#include<string.h>
int k,len,mod=1e9+7;
int book[1005],c[1005][1005],dp[1005][1005];
char n[10010];
void init()
{ //初始化函数,求 [1,1000]的数 i 变为 1需要的步数 book[i]和组合数 C[i][j]
int i,j,x,cnt;
book[1]=0;
book[2]=1;
book[3]=2;
book[4]=1;
book[5]=2;
book[6]=2;
book[7]=3;
book[8]=1;
book[9]=2;
book[10]=2;
for(i=11;i<=1000;i++)
{
x=i;
cnt=0;
while(x)
{ //求 x的二进制表示中 1 的个数
if(x&1) cnt++;
x>>=1;
}
book[i]=book[cnt]+1; //i 经过一步操作可以变为 cnt
}
//以下为根据组合数公式求组合数
for(i=0;i<1005;i++) c[i][0]=c[i][i]=1;
for(i=1;i<1005;i++)
{
for(j=1;j<i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
}
int solve(int num)
{ //求小于等于 n 的二进制数中 1的个数为 num的数的个数
if(num>len) return 0;
int i,j,a[1010];
for(i=0;i<len;i++) a[len-i]=n[i]-'0'; //逆序存储 n的每一位
if(a[1]) dp[1][1]=dp[1][0]=1; //确定第一位的值
else
{
dp[1][1]=0;
dp[1][0]=1;
}
for(i=2;i<=len;i++)
{ //根据公式计算 dp[i][j]
dp[i][0]=1;
for(j=1;j<=num;j++)
{
if(a[i]) dp[i][j]=(dp[i-1][j-1]+c[i-1][j])%mod; //当前位为 1时
else dp[i][j]=dp[i-1][j]%mod; //当前位为 0时
}
}
return dp[len][num];
}
int main()
{
int i,ans;
init();
while(~scanf("%s %d",n,&k))
{
len=strlen(n);
if(k==0) printf("1\n");
else if(k==1) printf("%d\n",len-1);
else if(k>5) printf("0\n");
else
{
ans=0;
for(i=1;i<=1000;i++)
{
if(book[i]==k-1) //寻找经一步操作可以到达 i 的数的个数并累加
ans=(ans+solve(i))%mod;
}
printf("%d\n",ans);
}
}
return 0;
}