机器学习——决策树

参考教材:机器学习实战(人民邮电出版社)Peter Harrington【美】著 

语言:python 

软件:VS code

决策树的构造

优点:使用计算成本低,人类易于理解学习结果,缺失值可以,可以处理不相关的特征

缺点:容易过拟合

适用于:数值、标称值

决策树的一般流程:

  1. 收集数据:可以使用任何方法。
  2. 准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
  3. 分析数据:可以使用任何方法,构造树完成后,我们应该检查图形是否符合预期。
  4. 训练算法:构造树的数据结构。
  5. 测试算法:使用经验树计算错误率。
  6. 使用算法:此步骤可以适用于任何监督学习算法,而使用决策时可以更好地理解数据的内在含义。

信息增益

划分数据集的大原则是:将无序数据变得更加有序,但是各种方法都有各自的优缺点,信息论是量化处理信息的分支科学,在划分数据集前后信息发生的变化称为信息增益,获得信息增益最高的特征就是最好的选择,所以必须先学习如何计算信息增益,集合信息的度量方式称为香农熵,或者简称熵。 

熵定义为信息的期望值,如果待分类的事物可能划分在多个类之中,则符号x_{i}的信息定义为             l(x_{i})=-log_{2}p(x_{i})

其中p(x_{i})是选择该分类的概率。

为了计算熵,我们需要计算所有类别所有可能值所包含的信息期望值,通过下式得到:

H=-\sum_{i=1}^{n}p(x_{i})log_{2}p(x_{i})

其中n是分类的数目。

创建数据集:

def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']
    return dataSet, labels

计算给定数据集的香农熵:

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:     #为所有可能分类创建字典
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2)        #以2为低求对数
    return shannonEnt
    

验证一下看是否成功:

这里算出熵为0.97,熵越高,则混合的数据就越多,我们添加第三个maybe类测试熵的变化:

 可以发现熵明显增加了,得到熵后,我们就可以按照获取最大信息增益的方法划分数据集

划分数据集

按照给定的特征划分数据集:

def splitDataSet(dataSet, axis, value):
    retDataSet = []  #创建一个新的列表对象
    for featVec in dataSet:
        if featVec[axis] == value:   #抽取符合特征的数据
            reducedFeatVec = featVec[:axis]     
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

接着测试一下代码:

 接下来就是遍历整个数据集,循环计算香农熵和splitDataSet()函数,找到最好的特征划分方式。熵的计算结果会告诉我们如何划分数据集是最好的数据组织方式。

选择最好的数据集划分方式:

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #将数据集中所有的第i个特征值或者所有可能存在的值写入这个新的list中
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)      
        newEntropy = 0.0
        for value in uniqueVals:        #遍历当前特征中的所有唯一属性,对每个特征划分一次数据集
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy    
        if (infoGain > bestInfoGain):       #比较所有特征中的信息增益,返回最好特征划分的索引值
            bestInfoGain = infoGain         
            bestFeature = i
    return bestFeature    

测试一下:

 可以看到,计算出来的结果是第0个特征是最好的用于划分数据集的特征。

递归构建决策树

由于特征值可能多余两个,基于最好属性划分数据集后可能存在大于两个分支的数据集划分。因此,我们可以采用递归的原则处理数据集。

递归结束的条件是:程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类。

递归代码:

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

创建树的函数代码:

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):         #第一个停止条件:所有的类别完全相同,则直接返回该类标签
        return classList[0]
    if len(dataSet[0]) == 1:        #第二个停止条件:使用完了所有特征,任然不能将数据集划分成仅包含唯一类别的分组
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]     #得到列表包含的所有属性值。
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]      
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree   

测试代码的实际输出结果:

在python中使用Matplotlib注解绘制属性图

定义树的格式:

import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")      #定义文本框和箭头格式,也就是树节点格式的常量
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )

获取叶节点的数目和树的层数:

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':      #测试节点的数据类型是否为字典。
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

def retrieveTree(i):        #测试数据
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
              {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
              ]
    return listOfTrees[i]

测试代码:

可以看到按照给定的测试数据,计算出来的叶节点有三个,层数有两层。

 创建树:

def plotMidText(cntrPt, parentPt, txtString):       #计算父子节点的中间位置,并在此添加简单的文本信息
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):        #计算树的宽度和高度
    numLeafs = getNumLeafs(myTree)  
    depth = getTreeDepth(myTree)
    firstStr = myTree.keys()[0]    
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)      #绘出子节点具有的特征值,或者沿此分支向下的数据实例必须具有的特征值。
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():       #按比例减少全局变量plotTree.yOff,并标注此处将要绘制子节点。
        if type(secondDict[key]).__name__=='dict':  
            plotTree(secondDict[key],cntrPt,str(key))       
        else:   
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

 之后,输入

>>> myTree=treePlotter.retrieveTree(0)
>>> treePlotter.createPlot(myTree)

来测试数据,结果如图所示:

 试着增加一个maybe标签,重新绘制一个图形:

测试和存储分类器

依靠训练数据构造完决策树后,我们用他对实际数据进行分类。

使用决策树的分类函数:

def classify(inputTree,featLabels,testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)      #使用index方法查找当前列表中第一个匹配firstStr变量的元素。
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

测试代码:

可以看到第一节点名为no surfacing,它有两个节点:一个是名字为0的叶子节点,类标签为no;另一个是名为flippers的判断节点,此处进入递归调用,flippers节点有两个子节点。

存储决策树:

def storeTree(inputTree,filename):
    import pickle
    fw = open(filename,'w')
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):
    import pickle
    fr = open(filename)
    return pickle.load(fr)

 在命令行中输入下面两行代码来验证

trees.storeTree(myTree,'classifierStorage.txt')
trees.grabTree('classifierStorage.txt')

 结果如下图所示:决策树存储完成。

实战:使用决策树预测隐形眼镜类型

使用已经训练完成的决策树去预测隐形眼镜类型。

 

实验过程中遇到的问题:

1.报错:'dict_keys' object is not subscriptable
    解决办法:将myTree.keys()[0]添加一个list为list(myTree.keys())[0]

2.报错:write() argument must be str, not bytes
    解决办法:将fw = open(filename,'w')改为用二进制方法打开fw = open(filename,'wb+')。

3.报错: 'gbk' codec can't decode byte 0x80 in position 0: illegal multibyte sequence
   解决办法:将fr = open(filename)改为fr = open(filename,'rb')

4.报错:reload时找不到这个函数
   解决办法:import imp导入imp包之后就可以使用reload。

本次实验为课本上的例子,之后会增加另外的实验样本。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值