- 博客(15)
- 收藏
- 关注
原创 计算机视觉---相机标定
一.相机标定原理:1.简介在图像测量过程以及机器视觉应用中,为确定空间物体表面某点的三维几何位置与其在图像中对应点之间的相互关系,必须建立相机成像的几何模型,这些几何模型参数就是相机参数。在大多数条件下这些参数必须通过实验与计算才能得到,这个求解参数的过程就称之为相机标定(或摄像机标定)。2.两类参数同步标定内部参数和外部参数,一般包括两种策略s: 1.光学标定: 利用已知的几何信息(如定长棋盘格)实 现参数求解。 2.自标定: 在静态场景中利用 structure .
2022-05-25 12:34:58 534
原创 全景图像拼接
一、图像映射与全景拼接1.1 简介首先是在连续图像对间使用SIFT特征寻找匹配对应点对,SIFT是具有较强稳健性的描述子,能够比其他描述子产生更少的错误点,但是该方法仍不是很完美;使用RANSAC算法估计出图像间的单应性矩阵,判定哪些点对是正确的,哪些点对是错误的,即使用一个阈值来决定哪些单应性矩阵是合理的;然后将所有的图像扭曲到一个公共的图像平面上。 通常,这里的公共平面为中心图像平面。一种方法是创建一个很大的图像,比如将图像中全部填充0,使其和中心图像平行,然后...
2022-04-14 14:03:15 7286 1
原创 计算机视觉——基于sift算法的地理信息图像匹配
目录一、SIFT(尺度不变特征变换)1.1 SIFT简介1.2 SIFT算法可以解决的问题1.3 SIFT算法实现特征匹配的三个主要流程1.4 关键点检测的相关概念1.4.1 哪些点是SIFT中要查找的关键点(特征点)?1.4.2 什么是尺度空间(scale space )?1.4.3 高斯模糊1.4.4 高斯金字塔1.5 关键点检测——DOG1.5.1 DoG(Difference of Gaussian)函数1.5.2 DoG高斯差分金字塔1...
2022-03-30 21:15:22 2925
原创 计算机视觉---图像处理基础
目录一、直方图1.1直方图定义1.2代码实现1.3运行结果二、高斯滤波2.1定义2.2代码实现2.3运行结果三、直方图均衡化3.1定义3.2代码实现3.3运行结果一、直方图1.1直方图定义用来表征该图像像素值得分布情况。用一定的小区间来指定表征像素值的范围,每个小区间会得到落入该小区间表示范围的像素数目。因此直方图不能显示图像中某像素所在的空间位置信息。1.2代码实现绘制直方图:使用Matplotlib自带的绘制工具plt.hist
2022-03-16 22:29:15 3403
原创 利用支持向量机解决早期糖尿病风险问题
一、支持向量机1.1简介支持向量机是一种二类分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,其学习策略就是间隔最大化,支持向量机学习方法包含构建由简至繁的模型:线性可分支持向量机,线性支持向量机以及非线性支持向量机。当训练数据线性可分时,通过硬间隔最大化(hard margin maximization),学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最化(soft margin maximization),也学习-一个线性的
2021-12-28 00:13:07 1615 1
原创 机器学习 朴素贝叶斯分类垃圾邮件
一、前言对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。既然是贝叶斯分类算法,那么分类的数学描述又是什么呢?从数学角度来说,分类问题可做如下定义:已知集合和,确定映射规则y = f(),使得任意有且仅有一个,使得成立。其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项
2021-11-29 21:32:43 1855
原创 C++标准模板库应用
一、实验内容1.撰写自己的算法和函数,结合容器和迭代器解决序列变换(如取反、平方、立方),像素变换(二值化、灰度拉伸);2.用set存储学生信息,并进行增删改查操作;3.输入一个字符串,用map统计每个字符出现的次数并输出字符及对应的次数。二、实验过程1.撰写自己的算法和函数,结合容器和迭代器解决序列变换(如取反、平方、立方),像素变换(二值化、灰度拉伸)1.1 非模板函数实现就是使用最普通的方法对元素进行取反、平方和立方操作。实现代码:void transInvT
2021-11-27 23:06:59 876
原创 机器学习:Logistic回归
一、线性模型与回归线性模型一般形式: 其中x=(x1, x2, ..., xd)是由d维属性描述的样本,其中 xi是 x 在 第 i 个属性上的取值。向量形式可记为: 其中w=(w1, w2, ..., wd)为待求解系数给定数据集 D={(x1, y1), (x2, y2), ..., (xm, ym)} 其中xi=(xi1, xi2, ..., xid), yiR举个简单的例子来说明,西瓜好坏的判定因素,x1,x2,x3…就可以分别用来指代,西瓜的色泽、根蒂和敲声,而w1
2021-11-22 18:27:14 547
原创 C++ 模板类与智能指针
一、实验内容一、模板函数(compare) 1.一般模板函数 2.特化模板函数二、类模板Queue 1.类模板(Queue) 2.成员模板函数 3.模板特化:模板函数特化、模板成员函数特化、模板类特化三、模板类AutoPtr 1.构造函数 2.析构函数 3.拷贝构造函数 4.等号、->、*等运算符重载 5.6主函数调用AutoPtr...
2021-11-17 23:16:15 2276
原创 C++实验2 继承和多态
目录一、实验内容二、实验过程(一)继承访问权限测试1.设计类A具有public,protected,private等不同属性的成员函数或变量2.类B通过public,protected,private等不同方式继承A,在类B的成员函数中测试访问A的成员函数或变量;3.B以private方式继承A,尝试把A中的部分protected成员提升为public。(二)友元类继承测试1.设计类A含有私有变量a,在类A中友元给类C;2.设计类B继承A,添加私有变量b;在...
2021-11-03 20:45:39 636
原创 决策树---使用三种方法对数据建立决策树
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、决策树原理 二、使用步骤 1.引入库 2.读入数据 总结前言提示:通过自己搜集数据对决策树分类进行测试。提示:以下是本篇文章正文内容,下面案例可供参考一、决策树原理决策树是一个预测判别模型。它代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,每个分支路径代表某个可能的属性值,每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的...
2021-10-28 01:43:19 6714
原创 CMatrix类设计
文章目录前言 一、实验内容 二、实现代码 1.main.cpp 2.CMatrix.h 3.CMatrix.h 4.运行结果 总结前言通过对CMatrix类的设计熟悉c++的类与对象,多态,构造函数,学习如何使用c++。一、实验内容一、构造函数1.CMatrix():不带参数的构造函数;2.CMatrix(intnRow,intnCol,double*pData=NULL):带行、列及数据指针等...
2021-10-13 20:24:37 112
原创 python实现手写识别系统
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、手写识别系统 二、主要步骤 1.准备数据:将图像转换为测试向量 2.测试算法:使用k-近邻算法识别手写数字 总结前言 knn算法又称为k近邻分类(k-nearest neighbor classification)算法,核心思想:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个相邻点的信息进行预测。 通常,在分类任务中可使用"投票法"...
2021-10-10 18:59:43 3948
原创 python实现KNN算法改进约会网站的配对效果
1.knn算法概述knn算法又称为k近邻分类(k-nearest neighbor classification)算法,核心思想:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个相邻点的信息进行预测。通常,在分类任务中可使用"投票法",即将这k个样本中出现最多的类别标记作为预测结果;在回归任务中可使用“平均法”,即将这k个样本的实际值输入标记的平均值作为预测结果;还可以基于距离远近进行加权平均或者加权投票,距离越近的样本权重越大。2.准备数据:从文本文件中解析数据
2021-10-03 19:57:10 495
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人