题目
Given a string containing just the characters ‘(’ and ‘)’, find the length of the longest valid (well-formed) parentheses substring.
Example 1:
Input: “(()”
Output: 2
Explanation: The longest valid parentheses substring is “()”
Example 2:
Input: “)()())”
Output: 4
Explanation: The longest valid parentheses substring is “()()”
思路
处理括号匹配问题,一个经典的思路是使用栈的数据结构:每次接受一个字符,就把这个字符放入栈内。如果当前字符是右括号,并且栈顶元素是左括号,那么这一对括号成功匹配,从栈中弹出。如果接受了整个字符串后栈变空,那么说明该字符串的括号成功匹配。
现在我们扩展一下这个处理的思路:题目要求我们找最长的匹配括号串,当我们发现了某个匹配的子串时,处理括号的栈遍会恢复此前的某个状态。我们用字符在字符串中的下标作为标号,把这些标号放入栈中,这样我们就可以用栈顶元素的标号来标识栈的状态。某次出栈后,当前元素与栈顶元素的序号差便是这个匹配子串的长度。
代码
class Solution {
public:
int longestValidParentheses(string str) {
vector<int> lastChar;
lastChar.push_back(-1);
int maxLen = 0;
for(int i = 0; i != str.size(); ++i) {
if(str[i] == '(') {
lastChar.push_back(i);
} else {
if(lastChar.back() != -1 && str[lastChar.back()] == '(') {
lastChar.pop_back();
int newLen = i - lastChar.back();
if(newLen > maxLen) {
maxLen = newLen;
}
} else {
lastChar.push_back(i);
}
}
}
return maxLen;
}
};
细节
注意到代码中一开始插入了一个-1,作为栈的初始状态。这样,在计算当前序号与栈顶序号的差时,就可以采用统一的相减方式,而不用考虑栈为空的情况了。