[leetcode] Longest Valid Parentheses

题目

Given a string containing just the characters ‘(’ and ‘)’, find the length of the longest valid (well-formed) parentheses substring.


Example 1:

Input: “(()”
Output: 2
Explanation: The longest valid parentheses substring is “()”


Example 2:

Input: “)()())”
Output: 4
Explanation: The longest valid parentheses substring is “()()”

思路

处理括号匹配问题,一个经典的思路是使用栈的数据结构:每次接受一个字符,就把这个字符放入栈内。如果当前字符是右括号,并且栈顶元素是左括号,那么这一对括号成功匹配,从栈中弹出。如果接受了整个字符串后栈变空,那么说明该字符串的括号成功匹配。
现在我们扩展一下这个处理的思路:题目要求我们找最长的匹配括号串,当我们发现了某个匹配的子串时,处理括号的栈遍会恢复此前的某个状态。我们用字符在字符串中的下标作为标号,把这些标号放入栈中,这样我们就可以用栈顶元素的标号来标识栈的状态。某次出栈后,当前元素与栈顶元素的序号差便是这个匹配子串的长度。

代码

class Solution {
public:
    int longestValidParentheses(string str) {
        vector<int> lastChar;
        lastChar.push_back(-1);
        int maxLen = 0;
        for(int i = 0; i != str.size(); ++i) {
            if(str[i] == '(') {
                lastChar.push_back(i);
            } else {
                if(lastChar.back() != -1 && str[lastChar.back()] == '(') {
                    lastChar.pop_back();
                    int newLen = i - lastChar.back();
                    if(newLen > maxLen) {
                        maxLen = newLen;
                    }
                } else {
                    lastChar.push_back(i);
                }
            }
        }
        return maxLen;
    }
};

细节

注意到代码中一开始插入了一个-1,作为栈的初始状态。这样,在计算当前序号与栈顶序号的差时,就可以采用统一的相减方式,而不用考虑栈为空的情况了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值