机器学习| 面试题:03、简介Adaboost_GBDT_XGBoost算法原理

本文深入探讨了Adaboost, GBDT(梯度提升决策树)和XGBoost的算法原理。Adaboost通过调整训练数据权重,构建弱分类器组合成强分类器。GBDT则通过迭代优化残差,逐步逼近真实值。XGBoost在GBDT基础上进行了优化,引入二阶泰勒展开和近似方法,提高了训练效率。" 49871913,5014777,Java面试题解析,"['Java', '面试题', '编程语言', '基础知识']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

在上一个问题 “boosting思想” 中我们已经简单谈了下提升方法 boosting 的基本思路,这个问题让我们深入了解下 boosting 思想中最具代表性的算法 AdaBoost。GBDT和XGBoost《统计学习方法》与《机器学习》这两本书中都没有涉及,但是看别人在牛客网上的面经分享都有提到,其实这两个算法主要在竞赛中经常被用到,因此还是有必要了解一下。

AdaBoost算法

特点:

  1. 不改变所给的训练数据,而不断改变训练数据权值的分布,使得训练数据在基本分类器的学习中起不同的作用
  2. 利用基本分类器的线性组合构建最终的分类器

假设给定一个二类分类的训练数据集:
T = { ( x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值