这可能是结构方程建模(SEM) 详细的文章了 点赞收藏

本文深入探讨了结构方程模型(SEM)及其应用场景,包括路径分析、验证性因子分析、分段结构方程模型和偏最小二乘路径模型。SEM用于处理复杂的因果关系网络,允许考虑多个变量间的直接和间接影响。文中通过实例介绍了各种SEM方法的特点和适用条件,强调了模型的构建和评价过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结构方程模型SEM剖析

 结构方程模型(Structural equation modeling,SEM),是表征自变量与因变量之间的直接或间接关系的一种类似于网络分析的统计分析方法。与传统的回归方程不同的是:SEM可以同时考虑多个自变量与因变量间的关系,由于实际情况中,变量间的关系并不一定是单一的相互对应关系。比如实际情况下,微生物群落多样性可能即受到温度,也受到降雨的影响,同时还受到养分(比如氮和碳)有效性的影响,但是,养分有效性又与水分和温度密切相关。在此例中,温度和水分不但对微生物群落有直接影响,而且通过养分有效性对微生物群落产生间接影响。因此,建立单一的回归模型可能拟合程度很高,但其也忽略了这种间接影响。于是,能够结合一个或多个模型的因果网状关系(根据知识体系构建)的结构方程模型就被引入具体分析中,而这种所谓的因果关系,即形成了某种特定的预设结构,而在这些预设结构中,又有各种方程表达式,因此就叫为结构方程模型。

上面的内容中提到网状的因果关系是基于分析作者的知识体系来构建的,因此,提示构建结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值