正则项
摘要
本文章主要讲述了L1和L2的基本定义,以及其所具有的性质,如下:
- L1
它的主要特性是能够产生稀疏解,某种程度上使得增加模型的”解释性“ - L2
它的主要特性是偏向于求得较小的解,通过限制权重的大小实现了对模型空间的限制,从而一定程度可以避免过拟合
针对他们的性质,从三个方面做了求证,最后从先验分布的角度将L1、L2和概率分布做了关联,其中L1假设参数服从拉普拉斯分布,L2假设参数服从高斯分布。
1. 正则化的定义
维基百科中给正则项做出了如下的解释,
In mathematics, statistics, and computer science, particularly in machine learning and inverse problems, regularization is the process of adding information in order to solve an ill-posed problem or to prevent overfitting.
简单理解:正则项是通过添加信息来解决不适定问题(ill-posed)或者防止过拟合,其应用范围很广,包括数理统计、图像以