正则项L1和L2

本文深入探讨了L1和L2正则化的概念,L1倾向于产生稀疏解,增强模型解释性,而L2则通过限制权重大小避免过拟合。通过损失函数、优化视角和等高线图分析了两者性质,指出L1的拉普拉斯先验和L2的高斯先验在正则化中的作用。
摘要由CSDN通过智能技术生成

正则项

摘要

本文章主要讲述了L1和L2的基本定义,以及其所具有的性质,如下:

  • L1
    它的主要特性是能够产生稀疏解,某种程度上使得增加模型的”解释性“
  • L2
    它的主要特性是偏向于求得较小的解,通过限制权重的大小实现了对模型空间的限制,从而一定程度可以避免过拟合

针对他们的性质,从三个方面做了求证,最后从先验分布的角度将L1、L2和概率分布做了关联,其中L1假设参数服从拉普拉斯分布,L2假设参数服从高斯分布。

1. 正则化的定义

维基百科中给正则项做出了如下的解释,

In mathematics, statistics, and computer science, particularly in machine learning and inverse problems, regularization is the process of adding information in order to solve an ill-posed problem or to prevent overfitting.

简单理解:正则项是通过添加信息来解决不适定问题(ill-posed)或者防止过拟合,其应用范围很广,包括数理统计、图像以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值