How to do Pairwise Comparisons in R?

这篇博客探讨了在R中进行成对比较的四种方法:Tukey、Scheffe、Bonferroni和Holm,以评估不同学习方法对学生考试成绩的影响。通过单向方差分析和后续的配对比较,可以确定各组间是否存在统计显著差异。文章通过实例展示了如何使用R的函数来实施这些方法,并解释了它们的应用场景和结果解读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何在 R 中进行成对比较,为了评估三个或更多独立组的均值之间是否存在统计显着差异,使用了单向方差分析。

以下原假设和备择假设用于单向方差分析。

H0: All group means are equal.
HA: Not all group means are equal.

假设一位老师对使用三种不同的学习方法是否会影响学生的考试成绩感到好奇。

为了对此进行测试,她随机将十名学生分配给每种学习方法,然后跟踪他们的考试结果。

要在 R 中进行单向方差分析并检查三组平均考试分数的变化,请使用以下代码:

让我们创建一个数据框


df <- data.frame(technique = rep(c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值