R语言 估计 u = 10, 估计检验第一类错误和检验的工效

该博客介绍了如何在R语言中进行正态分布的假设检验,关注第一类错误(当原假设成立时错误拒绝的概率)和检验功效(原假设不成立时拒绝原假设的概率)。通过生成正态分布样本,利用pnorm()和qnorm()函数计算错误率和功效,并给出示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设 X 独立来自正态 分布 , 假设检验 H0 u = 10, 估计检验第一类错误和检验的工效,写出R语言代码

假设检验的第一类错误率是指当原假设成立时,错误地拒绝原假设的概率。在正态分布下,可以使用标准正态分布的累积分布函数(CDF)计算检验的第一类错误率。

假设检验的功效是指当原假设不成立时,正确地拒绝原假设的概率。在正态分布下,可以使用样本均值和样本标准差计算统计量的分布,从而计算检验的功效。

以下是在 R 语言中执行假设检验的示例代码:

# 生成样本数据
set.seed(123)
n <- 100
x <- rnorm(n, mean = 9.8,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值