In this exercise you will create some simulated data and will fit simplelinear regression models to

该练习中,您将创建一些模拟数据并拟合简单的线性回归模型。通过设置不同噪声水平,观察噪声对线性模型和多项式模型的影响。结果表明,噪声水平的增加会降低线性模型的准确性,而多项式模型在高噪声条件下并不显著优于线性模型。
摘要由CSDN通过智能技术生成

In this exercise you will create some simulated data and will fit simplelinear regression models to it.Make sure to use set.seed(1) prior tostarting part (a) to ensure consistent results.

set.seed(1) 

a)Using the rnorm() function, create a vector, x, containing 100observations drawn from a N(0,1) distribution.This representsa feature, X.

# Create a vector x containing 100 observations from N(0,1)
x <- rnorm(100, mean = 0, sd = 1)

(b)Using the rnorm() function, create a vector, eps, containing 100observations drawn from a N(0,0.25) distribution-a normaldistribution with mean zero and variance 0.25.

# Create a vecto
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值