limma 小样本量的差异表达分析教程

该教程介绍了如何利用R中的limma包处理小样本量的基因表达数据,涉及模拟数据、线性模型拟合、折叠变化阈值法、火山图、均值差异图和Q-Q图的生成,以及结果文件的输出。教程适用于理解并应用limma进行差异表达分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本教程将使用R中的simulated数据集,模拟100个探针和6个微阵列的基因表达数据。这些微阵列分为两组,其中前两个探针在第二组中呈差异表达。基因的标准差在不同基因之间变化,先验的自由度为4。

1. 导入必要的库和数据

# 导入必要的库
library(limma)

# 设定随机数生成种子以确保结果可重复
set.seed(123)

# 模拟基因表达数据
sd <- 0.3 * sqrt(4 / rchisq(100, df = 4))
y <- matrix(rnorm(100 * 6, sd = sd), 100, 6)
rownames(y) <- paste("Gene", 1:100)
y[1:2, 4:6] <- y[1:2, 4:6] + 2

# 创建设计矩阵
design <- cbind(Grp1 = 1, Grp2vs1 = c(0, 0, 0, 1, 1, 1))

2. 普通的线性模型拟合

# 拟合线性模型
fit <- lmFit(y, design)

# 进行贝叶斯调整
fit <- eBayes(fit)

# 显示差异表达基因
topTable(fit, coef = 2)

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值