:基于MCMC算法的GJR-GARCH模型的贝叶斯推断 上证指数

该博客探讨了如何使用R语言进行基于MCMC算法的GJR-GARCH模型的贝叶斯推断,涉及上证指数数据,涵盖了GARCH、gjrGARCH和eGARCH的模型应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目要求:基于MCMC算法的GJR-GARCH模型的贝叶斯推断
求的是garch模型的参数 和 garch 模型和 egarch 模型
语言:R语言

上证指数.csv

# GARCH模型
library(rugarch)

set.seed(4)

data = read.csv("上证指数.csv")
garchsim <- ts(rev(data$收盘价),start = c(2012,3,8),frequency =250)
plot(garchsim, type = "l")

在这里插入图片描述

GARCH

# 拟合序列1
spec=ugarchspec(variance.model = list(model="sGARCH",garchOrder = c(1, 1))) 

garchfit <- ugarchfit(spec = spec,
                      data = garchsim)

garchfit
plot(garch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值