某试卷共有5题,每题20分。为简单起见,假定每一题得分要么是0要么是20.出题老师心目中学生分为ABC三类,其中AC两类大约占15%,A类学生答对各题的可能性大约是0.9,0.8,0.8,0.8.0.7,B类学生大约是 0.8.0.7,0.7,0.60.5.C类学生大约是0.7.0.4.0.4.0.3.0.1.老师希望知道本试卷的期望及格率。直接计算理论上容易,但非常繁琐。请模拟10000名考生的答题结果,然后用得到的样本计算 A.BC三类学生以及总体的成绩分布。
用来自指数分布的样本近似计算 r(x)=tx-e-tdt.把体积当作积分,用Monte Carlo 方法近似计算R”中半径为1的球体体积。注意与精确值 /T(+1)进行比较。
用随机模拟验证下列结果:设 U,Ue 是服从 U(0,1)的随机变量,而且相互独立,则X=v-2lnUcos(2U2),X=√-2inUsin(2U)相互独立并且服从分布 N(0.1)用随机模拟验证下列结果:如果XYX2Y,YPois()则X~xx
set.seed(123) # 设置随机种子以重现结果
num_students <- 10000
num_questions <- 5
question_points <- c(20, 20, 20, 20, 20)