某试卷共有5题,每题20分。为简单起见,假定每一题得分要么是0要么是20.出题老师心目中学生分为ABC三类,其中AC两类大约占15%,A类学生答对各题的可能性大约是0.9,0.8,0.8,0.8.0.

该博客探讨了一种利用随机模拟的方法来估算试卷的及格率,特别是在处理复杂概率分布时。博主通过模拟10000名考生的答题情况,分析了A、B、C三类学生群体的答题表现,以近似计算及格率。此外,还应用Monte Carlo方法来估算特定几何形状的体积,并通过随机模拟验证了两个随机变量的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

某试卷共有5题,每题20分。为简单起见,假定每一题得分要么是0要么是20.出题老师心目中学生分为ABC三类,其中AC两类大约占15%,A类学生答对各题的可能性大约是0.9,0.8,0.8,0.8.0.7,B类学生大约是 0.8.0.7,0.7,0.60.5.C类学生大约是0.7.0.4.0.4.0.3.0.1.老师希望知道本试卷的期望及格率。直接计算理论上容易,但非常繁琐。请模拟10000名考生的答题结果,然后用得到的样本计算 A.BC三类学生以及总体的成绩分布。
用来自指数分布的样本近似计算 r(x)=tx-e-tdt.把体积当作积分,用Monte Carlo 方法近似计算R”中半径为1的球体体积。注意与精确值 /T(+1)进行比较。
用随机模拟验证下列结果:设 U,Ue 是服从 U(0,1)的随机变量,而且相互独立,则X=v-2lnUcos(2U2),X=√-2inUsin(2U)相互独立并且服从分布 N(0.1)用随机模拟验证下列结果:如果XYX2Y,YPois()则X~xx

set.seed(123)  # 设置随机种子以重现结果
num_students <- 10000
num_questions <- 5
question_points <- c(20, 20, 20, 20, 20)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值