【算法笔记(五)】之贪心算法求取不相区间

本文章由公号【开发小鸽】发布!欢迎关注!!!


老规矩–妹妹镇楼:

一. 贪心算法:

       求解最优化问题的方法,考虑在当前状态下局部最优的策略,使得全局的结果达到最优的状态。因为,全局的最优是由中间的每一步最优组成的,那么可以用局部的最优一步步推得全部的最优。

       一个问题的最优解可以有它的子问题的最优解构造出来。这其实用的就是迭代的思维,将一个问题分解为许多子问题求解。

二.区间贪心

       区间不相交问题:给出N个开区间(x,y),从中选择尽可能多的开区间,使得这些开区间两两之间没有交集。

三.思路:

       局部的最优,将区间按照左端点或者右端点排序,然后从左端点最大的区间开始,向左查找是否有区间的右端点不大于该区间的左端点,这样一直循环,直到结束,就可以找出所有的不相交区间。

四.代码:


#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

class Line
{
public:
	int x;
	int y;
};

vector<Line> lines;

bool cmp(Line l1, Line l2)
{
	if (l1.x != l2.x)
		return l1.x > l2.x;
	else
		return l1.y < l2.y;
}


int main()
{
	int n;
	cin >> n;
	for (int i = 0; i < n; ++i)
	{
		Line l1 = Line();
		cin >> l1.x >> l1.y;
		lines.push_back(l1);
	}

	sort(lines.begin(), lines.end(), cmp);

	int ans = 1;			//不相交区间个数
	int lastx = lines[0].x;	//上一个被选中区间的左端点
	cout << lines[0].x << "-"<<  lines[0].y << endl;
	for (int i = 1; i < n; ++i)
	{
		if (lines[i].y <= lastx)	//该区间左端点在lastx左边
		{
			lastx = lines[i].x;
			ans++;					//选中
			cout << lines[i].x <<"-"<< lines[i].y << endl;
		}
		
	}

	cout << ans << endl;

	return 0;
}
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页