本文章由公号【开发小鸽】发布!欢迎关注!!!
老规矩–妹妹镇楼:
一. 题目
(一) 题干
给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。
(二) 示例
输入:
A: [1,2,3,2,1]
B: [3,2,1,4,7]
输出:3
解释:
长度最长的公共子数组是 [3, 2, 1] 。
二. 题解
(一) 思路
比较两个整数数组,找最大的公共子数组。一开始想着用双指针的方法来比较,但是没办法不断更新比较的结果。之后想到用暴力解法,将A数组的每个数,与B数组的每个数进行比较,但是这样时间复杂度过高。一直都没意识到这种不断递推的题目可以用动态规划来做,之前做DP的题目都是在一个数组对象上操作,这种比较两个数组的题目就可以用一个二维DP数组来解决,dp[i][j]就代表着A[i]开头的子数组与B[j]开头的子数组之间的最长公共子数组长度。从两个数组的末尾开始,不断向前递推,如果两个数组的两个节点的数字相同,说明以dp[i][j]至少为1,其他的就需要看dp[i-1][j-1]的情况了。即dp[i][j] = dp[i-1][j-1] + 1,否则dp[i][j] = 0。
(二) 代码实现
Java:
class Solution {
public int findLength(int[] A, int[] B) {
// dp思路
int an = A.length;
int bn = B.length;
int[][] dp = new int[an+1][bn+1];
int ans = 0;
for(int i = an -1; i >= 0; --i){
for(int j = bn -1; j >= 0; --j){
dp[i][j] = A[i] == B[j] ? dp[i+1][j+1] + 1 : 0;
ans =Math.max(ans, dp[i][j]);
}
}
return ans;
}
}