博弈 - SG函数和SG定理

Algorithms 同时被 2 个专栏收录
19 篇文章 0 订阅
9 篇文章 0 订阅

转自:http://blog.csdn.net/luomingjun12315/article/details/45555495

在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧.

必胜点和必败点的概念
        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
        N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质
        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以 hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
      n    :   0    1    2    3    4   5    6 ...
position:  P    N   N    P   N   N   P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
现在给你一个稍微复杂一点点的:  hdu 2147 kiki's game

        现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单————SG函数和SG定理。

Sprague-Grundy定理(SG定理):

        游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。不知道Nim游戏的请移步:这里

SG函数:

        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

        对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

【实例】取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;

x=4 时,可以取走4-  f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;

以此类推.....

   x        0  1  2  3  4  5  6  7  8....

SG[x]    0  1  0  1  2  3  2  0  1....

由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:

1、使用 数组f 将 可改变当前状态 的方式记录下来。

2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。

3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。

4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。

代码实现如下:

//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理  
//SG[]:0~n的SG函数值  
//S[]:为x后继状态的集合  
int f[N],SG[MAXN],S[MAXN];  
void  getSG(int n){  
    int i,j;  
    memset(SG,0,sizeof(SG));  
    //因为SG[0]始终等于0,所以i从1开始  
    for(i = 1; i <= n; i++){  
        //每一次都要将上一状态 的 后继集合 重置  
        memset(S,0,sizeof(S));  
        for(j = 0; f[j] <= i && j <= N; j++)  
            S[SG[i-f[j]]] = 1;  //将后继状态的SG函数值进行标记  
        for(j = 0;; j++) if(!S[j]){   //查询当前后继状态SG值中最小的非零值  
            SG[i] = j;  
            break;  
        }  
    }  
}  

实现上述取石子游戏:

#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
const int MAXN = 10000 + 7;
int sg[MAXN];     // Station i must lose iff sg[i] = 0, or i win
int subseq[MAXN]; // Recording subsequence of station i
int pick[MAXN];   // Ways to change station
int n, m;
void getSg(int n) { // Get all sg between 1 to n
        memset(sg, 0, sizeof(sg));
        for(int i = 1; i <= n; ++i) {
                memset(subseq, 0, sizeof(subseq));
                for(int j = 0; pick[j] <= i && j <= m; ++j) {
                        subseq[sg[i-pick[j]]] = 1;  // Change pick[i] from u so that u-pick[i] is a subsequence to u
                }
                for(int j = 0; ; ++j) {
                        if(!subseq[j]) {        // i is the first non-negetive number of u's subsequence
                                sg[i] = j;
                                break;
                        }
                }
        }
} 

int main()
{
        ios::sync_with_stdio(false);
        while(cin >> n >> m) {
                for(int i = 0; i < m; ++i) cin >> pick[i];
                getSg(n);
                if(sg[n]) cout << "Win" << endl;
                else cout << "Lose" << endl;
        }
        return 0;
}

dfs递归求sg值:

int sg[MAXN];
vector<int> gra[MAXN]; // 邻接表建立拓扑图

int dfs(int a) {
    if(sg[a] >= 0) return sg[a];
    int subSeq[MAXN] = {0};
    for(int j = 0; j < gra[a].size(); ++j) {
            sg[gra[a][j]] = dfs(gra[a][j]); // 递归求后继sg值
            subSeq[sg[gra[a][j]]] = 1;      // 标记后继状态
    }
    for(int i = 0; ; ++i) {
        if(!subSeq[i]) {
            return sg[a] = i;               // mex函数定义
        }
    }
 };


  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值