SG函数和SG定理

大神链

我们先用一个简单的例子引入:
考虑有这样一个游戏,有3堆火柴,分别有a,b,c根,记为(a,b,c)
每次一个游戏者可以从任意一堆中拿走至少一根火柴,也可以整堆拿走,但是不能从多堆火柴中拿
无法拿火柴的人输
这个游戏就叫做Nim游戏

举个例子,假设a=1,b=2,c=3,若你先拿,你会怎么办呢?
方案一:(1,2,3)—->(0,2,3),然而只要对手把状态变成(0,2,2),你就输定了(因为对手可以模仿你的操作)
方案二:(1,2,3)—->(1,0,3)或者(1,2,3)—->(1,2,0),这样的状态和方案一是一样的
方案三:(1,2,3)—->(1,2,2)或者(1,2,3)—->(1,2,1)或者(1,2,3)—->(1,2,0),这样的状态下,你还是会输

至此,我们讨论了所有6种可能的拿法,都是你输
所以我们说(1,2,3)是一个先手必败状态,简称必败状态
而(1,2,3)的所有后继状态都是先手必胜状态
这里我们提出两个规则:

规则一

一个状态是必败态当且仅当ta的所有后继都是必胜状态

规则二

一个状态是必胜态当且仅当ta至少有一个后继是必败状态

下面我们介绍一些经典游戏:

Chomp 游戏

有一个 mn 的棋盘,每次可以取走一个方格并拿掉ta右边和上面的所有方格
拿到左下角的格子(1,1)者输

分析:本题的结论有一点偏激:除了(1,1)是先手必败之外,其他情况都是先手必胜
我们可以用反证法:如果后手有必胜状态,使得无论先手取哪个格子,后手都可以获得胜利
那么现在假设先手取得最右上角的石子(m,n),接下来通过某种取法使得自己抢先进入必胜状态
但实际上,先手第一次就可以取得和后手一样的状态,抢先进入必胜状态

约数游戏

有1到n个数字,两个人轮流选择一个数,并且把ta和ta的所有约数删去
擦去最后一个数的人赢

分析:这道题和 Chomp 游戏有异曲同工之妙
假如先手第一次取了1,接下来后手通过某种取法使得自己抢先进入必胜状态
实际上,先手第一次就可以取得和后手一样的状态,抢先进入必胜状态

现在我们回到一开始的 Nim 游戏
L.Bouton 1902 年提出了这样一个定理:
状态 x1,x2,x3 是必败态,当且仅当 x1xorx2xorx3=0 ,这个异或和就叫做游戏的 Nim

我们要想办法这条定理扩展到所有的博弈问题上
下面我们就介绍一个很好的工具:SG函数和SG定理

SG函数

首先定义mex(minimal excludant)运算
这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数
例如mex{0,1,2,4}=3,mex{2,3,5}=0,mex{}=0

对于任意状态 x , 定义 SG(x)=mex(S),其中 S x后继状态的SG函数值的集合
x 有三个后继状态分别为SG(a),SG(b),SG(c),那么 SG(x)=mex(SG(a),SG(b),SG(c))
SG 函数的终态为 SG(x)=0 ,当且仅当 x 为必败点时

Sprague-Grundy定理(SG定理)

游戏和的SG函数等于各个游戏 SG 函数的 Nim
这样就可以将每一个子游戏分而治之,从而简化了问题
Bouton 定理就是 SpragueGrundy 定理在 Nim 游戏中的直接应用,因为单堆的 Nim 游戏 SG 函数满足 SG(x)=x

我们可以通过一个例题来理解一下:

翻棋子游戏

一个棋盘上每个格子有一个棋子,每次操作可以随便选择一个朝上的棋子 xy
选择一个形如 xb ay (其中 b<y,a<x ),把两个棋子一起翻过来,无法操作的人输

分析:把坐标为(x,y)的棋子看做大小分别为 x y的两堆火柴,则本题转化为了经典的 Nim 游戏

除法游戏

一个 nm 的矩阵,每个元素均为2~10000之间的正整数
两个游戏者轮流操作,每次可以选一行中的1个或多个大于1的整数,把ta们中的每个数都变成ta的某个真因子
比如12可以变成1,2,3,4,6中的一个
不能操作的输(换句话说,如果在谁操作之前,在矩阵中的所有数都是1,则ta输)

分析:考虑把每个数素因数分解
比如说 12=233 ,那么“变成他的素因数”就等价于拿掉ta的一个或多个素因子
如果我们把每个数的一个素因子看成一块石子,每个数看成一堆石子
则本题和 Nim 游戏就完全等价了

取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{SG[0]}= mex{0} = 1

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{SG[1]}= mex{1} = 0

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1

x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3

以此类推…..

 x       0  1  2  3  4  5  6  7  8....

SG[x]    0  1  0  1  2  3  2  0  1....

由此我们就可以得到SG函数值求解步骤

  • 记录所有的可改变当前状态
  • 记录将当前状态 x 的后继状态标记
  • 模拟mex运算,也就是在标记值中搜索未被标记值的最小值,将其赋值给 SG(x)
  • 我们不断的重复2~3的步骤,就完成了计算1~n的函数值
int f[N],SG[N],S[N];
//f[N]:当前状态的改变方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
void getSG(int n)
{
    memset(SG,0,sizeof(SG));
    //SG[0]=0
    for (int i=1;i<=n;i++)
    {
        memset(S,0,sizeof(S));
        for (j=0;f[j]<=i&&j<N;j++)
            S[SG[i-f[j]]]=1;
        for (j=0;;j++) if (!S[j])
        {
            SG[i]=j;
            break;
        }
    }
}
  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值