最大子序列和的问题的解

1 篇文章 0 订阅
0 篇文章 0 订阅

所谓最大子序列和问题:

给定整数A1,A2,... ,An(可能有负数),求∑Ak的最大值(k从i到j),如果所有整数均为负数,则最大子序列和为0。

下面通过4个算法来求解最大子序列和问题,每个算法的效率都不一样且效率越来越好。

算法代码来自《数据结构与算法分析——C语言描述》第2版


/******算法 1,时间复杂度O(n3) ******/


int MaxSubSequenceSum(const int A[ ],int N)
{
int ThisSum, MaxSum, i, j, k;
MaxSum = 0;
for(i = 0;i < N;i++)
for(j = i;j < N;j++)
{
ThisSum = 0;
for(k = i;k < j;k++)
ThisSum += A[k];

if(ThisSum > MaxSum)
MaxSum = ThisSum;
}
return MaxSum;
}


/******算法 2,时间复杂度O(n2) ******/


int MaxSubSequenceSum(const int A[ ],int N)
{
int ThisSum, MaxSum, i, j;
MaxSum = 0;
for(i = 0;i < N;i++)
{
ThisSum = 0;
for(j = i;j < N;j++)
{
ThisSum += A[j];

if(ThisSum > MaxSum)
MaxSum = ThisSum;
}
}
return MaxSum;
}


/******算法 3,采用分治算法,时间复杂度O(nlogn) ******/


int Max3(int x,int y,int z)
{

return (x>y)?(x>z?x:z):(y>z?y:z);



static int MaxSubSum(const int A[ ],int Left,int Right)     

//static所修饰的函数,表示该函数只能在本文件(模块)                                                                                                 //中使用,其他文件不能调用该函数
{

int MaxLeftSum, MaxRightSum;
int MaxLeftBorderSum, MaxRightBorderSum;
int LeftBorderSum, RightBorderSum;
int Center, i;

if(Left == Right)  /*Base case*/
if(A[Left] > 0)
return A[Left];
else 
return 0;

Center = (Left + Right)/2;
MaxLeftSum = MaxSubSum(A,Left,Center);
MaxRightSum = MaxSubSum(A,Center+1,Right);

MaxLeftBorderSum = 0; LeftBorderSum = 0;
for(i = Center;i >= Left;i--)
{
LeftBorderSum += A[i];
if(LeftBorderSum > MaxLeftBorderSum)
MaxLeftBorderSum = LeftBorderSum;
}

MaxRightBorderSum = 0; RightBorderSum = 0;
for(i = Center + 1;i <= Right;i++)
{
RightBorderSum += A[i];
if(RightBorderSum > MaxRightBorderSum)
MaxRightBorderSum = RightBorderSum;
}

return Max3(MaxLeftSum,MaxRightSum,MaxLeftBorderSum + MaxRightBorderSum);
}


int MaxSubSequenceSum(const int A[ ],int N)
{

return MaxSubSum(A,0,N-1);
}


/******算法4 ,时间复杂度O(n) ******/


int MaxSubSequenceSum(const int A[],int N)
{
int ThisSum, MaxSum, i;

ThisSum = MaxSum = 0;
for(i = 0;i < N;i++)
{
ThisSum += A[i];

if(ThisSum > MaxSum)
MaxSum = ThisSum;
else if(ThisSum < 0)
ThisSum = 0;
}
return MaxSum;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值