今天唠一唠比较常见的分类算法和实现过程中数据的归一化和测试训练集的划分,下面还是惯例画的很烂的思维导图一副。
1、归一化
在分类过程中由于数据的取值范围不同,我们需要对数据进行归一化。最简单的归一化方法就是 最大值-数据值/最大值-最小值,这种方法比较粗糙,更好的方法是标准分数法:数据值-均值/标准差,但这种方法是有缺陷的因为特别突出的大的数值会影响均值,例如几个屌丝和一个土豪一起算平均工资。比较好的方法是中位数法:数据值-中位数/绝对标准差。
2、常见的分类方法
在这里不详细介绍,对各个方法会另起篇幅介绍
1.支持向量机(SVM) 适用于小样本
2.向量空间法 就是余弦定理,太简单不会介绍,适用于文本分类
3.朴素贝叶斯
4.决策树
5.神经网络
3.测试与训练
3.1测试与训练集的选取
一般采用十折交叉验证,就是把数据集分成十份,一份用于测试九份用于训练,可以重复十次。
3.2 评判标准
3.2.1准确率
P(C)=正确分类/总样本
3.2.2 kappa值
随机分类的准确率P(R)=随机分类后正确的分类/总样本数
K=P(C)-P(R)/1-P(R)