基本逻辑操作:属于,包含,交差并补等。(略)
灰度图像的集合操作:灰度值的并集操作和交集操作通常分别定义为相应像素对的最大和最小,而补集操作定义为常数与图像中每个像素的灰度间的两两之差。
如:灰度级图像的元素用集合A表示,其中元素是三元组形式(x,y,z),x与y为空间坐标,z为灰度。补集:
Ac={(x, y, K-z)|(x, y, z)∈A};
其中K = 2k - 1,k为表示z的灰度的比特数。
如
An = Ac={(x, y, 255-z)|(x, y, z)∈A};
同理,两个灰度集合A和B的并集可定义为集合
A∪B = {max(a, b)|a∈A, b∈B};
灰度图像的逻辑操作:AND, OR, NOT, XOR(略)。
模糊集合:举个栗子
令U代表所有的人,令A为U的子集,为年轻人的集合。引入隶属度函数对U中每个元素赋值。隶属度函数简单地定义为一个阈值,低于该阈值的为年轻人,高于该阈值的为非年轻人。思考:假设20岁为阈值,20岁为年轻人,20岁零一秒就不是年轻人了?所以需要更多的灵活性,即从年轻到非年轻过渡。使用模糊集合可以声明一个人的年轻度为50%。换句话说,年龄是一个不精确的概念,而模糊逻辑提供处理这种概念的工具。
友好连接:http://blog.csdn.net/zhengxiaoyang995926/article/details/79397246