4-6 4-7 Normal Equaltion for Linear regression

本文对比了标准方程法与梯度下降法的区别,详细介绍了标准方程法的计算过程,包括求偏导数和解系数等步骤。此外还探讨了在(XT*X)不可逆情况下的解决方案,如减少冗余特征变量或使用正则化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标准方程法(区别对立与梯度下降法)

不是迭代下降寻找最优解,而是通过计算求解(利用微积分)

步骤:

①对每一变量对应系数求偏导数;

②令偏导数为零;求解此时系数。

可直接利用程序实现:图示关系通过程序直接实现

     y=X*theta  ——    

梯度下降与标准方程法区别:图示

(特征变量归一化在梯度下降时有要,但标准方程法则没有必要)两种算法都有可取之处,根据实际情况选择。

 

 标准方程法——(XT*X)不可逆时怎么办

1. 存在冗余特征变量——减少特征变量个数:(线性减少)
2. 当有很多特征变量时,特征变量数多余训练样本数——delete 一些特征变量,或者使用regularization(接下来章节)。
  图示:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值