
Andrew NG Learning
Mumu_Mill
这个作者很懒,什么都没留下…
展开
-
1-3,1-4:machine Learning and supervised Learning
监督学习:给定数据集样本,能给出准确的结果。 可以理解为待预测的可以被模型明确地训练出来(有充分训练样本)分类问题:离散的结果,breast cancer回归问题:数据多,可当实数 house price predict无监督学习:所有数据一样,没有属性或者标签,只有数据,但数据怎么样,什么意思不知道,怎么找到其中的关系?算法自原创 2017-09-06 20:27:47 · 301 阅读 · 0 评论 -
7-3 7-4 正则化在线性回归和非线性回归
7-3、正则化在线性回归1、正则后的线性回归问题设定2、正则化后损失函数的优化问题:——梯度下降法、正规方程求解法梯度下降法中:分析和直观理解:操作同传统梯度下降法一致,只是相当于对原来的参数theta进行一个变小压缩,如图。正规方程法:形式如图,多了一个近似单位阵的矩阵去求解theta同时对于可能原创 2017-09-12 21:52:41 · 778 阅读 · 0 评论 -
7-1 过拟合问题
1、什么是过拟合?Example:Linear regressionExample:Logistic regression分析:过拟合时——高方差2、Addressing overfitting变量很多,目标函数多元多次,且没有重组的训练样本,很容易出现过拟合问题。分析:实际原创 2017-09-10 15:58:03 · 369 阅读 · 0 评论 -
6章 分类问题、逻辑回归算法
6-1、classification什么是分类问题:positive/negative二分类问题、多分类问题Threshold classifier线性回归对于分类问题的实用性逻辑回归对于分类问题的实用性——典型的分类算法6-2、逻辑回归算法的目标函数函数h的含义和目的:给定输入样本,去估计y=1的概率;原创 2017-09-10 15:37:26 · 550 阅读 · 0 评论 -
5-1章 Octave介绍
5-1、About Octave Operation(略)5-2、Octave(略)5-3、Octave ——Computation on data5-4、Octave——Plotting5-5、Octave——using control function——循环等Octave总结:类似matlab,简单易上手~5-6、Vectorization——向量化—原创 2017-09-08 22:43:32 · 356 阅读 · 0 评论 -
4-6 4-7 Normal Equaltion for Linear regression
标准方程法(区别对立与梯度下降法)不是迭代下降寻找最优解,而是通过计算求解(利用微积分)步骤:①对每一变量对应系数求偏导数;②令偏导数为零;求解此时系数。可直接利用程序实现:图示关系原创 2017-09-08 10:41:05 · 435 阅读 · 0 评论 -
4-4 特征选择和模型建立
变量(特征)选择给定直观的影响变量后,可对变量根据某种关系进行组合变换,得出满足自己某种需求的新变量;如:房价,房长*宽=面积多项式回归多元线性回归用多元线性回归去拟合数据,合理增加特征变量,使得拟合不下降(二次模型变为三次模型);此时变量特征的scale很重要,尽可能保持一致;真正应该怎么选择变量特征,即函数怎么设计拟合最好?原创 2017-09-08 10:39:32 · 940 阅读 · 0 评论 -
4-2 4-3 4-4 Gradient Descent for Multiple Variables
多变量线性回归问题——梯度下降算法流程同第二章里单变量所讲一致;区别在于变量对应的系数增多,偏导数增多;梯度下降算法Tricks①Feature Scaling:多个变量(也可称为特征)的数量级能接近 similar scale 例如【0,1】【-1,1】区间Mean Normalization:xi由xi-ui替代② Learn原创 2017-09-07 22:52:22 · 395 阅读 · 0 评论 -
4-1 Multiple Feature
对于某一结果(问题),包含多个影响变量x1, x2, x3, x4.....多变量线性回归问题:原创 2017-09-07 22:40:24 · 381 阅读 · 0 评论 -
3章 Matrices and Vector
MatrixVector简单计算规则原创 2017-09-07 19:48:25 · 347 阅读 · 0 评论 -
2-1 2-2 2-3 2-4 2-5 2-6 2-7: Model regression and Cost function
例:housing Price监督学习:给出正确的答案回归问题:预测出正确的结果训练回归模型:training set——算法——hypothesis原创 2017-09-06 20:34:56 · 449 阅读 · 0 评论 -
7-2 加正则化后的损失函数
a原创 2017-09-11 20:37:11 · 1628 阅读 · 0 评论