arxiv
上交卢策武团队新出的关于多人pose的文章.和alphapose一样属于top-down的方法.该文并没有着重于设计新的网络结构,而转向于设计新的label和loss计算方式,从而提高原有的网络pose检测能力.
首先文章指出, 多人pose这部分已经发展的很快,并且效果也挺好.但目前而言,所有的多人pose都是在类似于公开的COCO, MPII, ai-challenger等这些数据集上训练,而这些数据集并没有特意的去区分哪些是’crowd scene’, 哪些不是.所以,这些多人pose网络在这些数据集上的训练效果,可能没有办法很好的去解决’crowd scene’这种情况.因此,文章根据这个现状,提出了一个新的dataset(CrowdPose dataset)以及一个新的loss计算方法.
CrowdPose Dataset
首先文章提出了一个’crowd index’用来表示图片’crowd’的程度,计算方式如下:
n表示图片上总共有多少个人, 分母表示第 i i i