CrowdPose: Efficient Crowded Scenes Pose Estimation and A new Benchmark

本文介绍了上交卢策武团队创建的CrowdPose数据集,用于解决多人姿态估计在拥挤场景中的挑战。他们提出了一个新的‘人群指数’来衡量拥挤程度,并设计了一种新的损失函数,区分目标关节和干扰关节,以提高网络在密集人群中的表现。此外,文章还引入了Person-Joint Graph来处理关节检测的重叠问题。代码和数据集即将开源。
摘要由CSDN通过智能技术生成

arxiv
上交卢策武团队新出的关于多人pose的文章.和alphapose一样属于top-down的方法.该文并没有着重于设计新的网络结构,而转向于设计新的label和loss计算方式,从而提高原有的网络pose检测能力.
在这里插入图片描述
首先文章指出, 多人pose这部分已经发展的很快,并且效果也挺好.但目前而言,所有的多人pose都是在类似于公开的COCO, MPII, ai-challenger等这些数据集上训练,而这些数据集并没有特意的去区分哪些是’crowd scene’, 哪些不是.所以,这些多人pose网络在这些数据集上的训练效果,可能没有办法很好的去解决’crowd scene’这种情况.因此,文章根据这个现状,提出了一个新的dataset(CrowdPose dataset)以及一个新的loss计算方法.

CrowdPose Dataset
首先文章提出了一个’crowd index’用来表示图片’crowd’的程度,计算方式如下:
n表示图片上总共有多少个人, 分母表示第 i i i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值