【1】如何根据一个等式来判断这个系统采用的几进制

本文通过两个实例,详细解析了如何通过给定的等式来判断其所在系统所采用的进制。首先介绍了一种通用的方法,然后通过具体步骤演示了解决此类问题的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1、 在某个系统中,等式15*4=112成立的话,那么这个系统采用的( 6)进制

         A.6        B.8          C.12        D.16


        (n + 5 ) * 4 = n^2 + n + 2

       (1)  对等式两边同时%n,20 % n = 2 % n;

             注:2 % n = 可为 0,1,2,所以 20 % n 最起码得为2;

       (2)对等式两边同时整除n后再%n, (4 + 20/n) % n = (1 + 2/n) % n =  1;

         联立解的 n = 6;


2、假设在n进制下,下面的等式成立,即567*456 = 150216,那么n的值是()

         A.9        B.10          C.12        D.18

          那么我们把该等式拓展开:

          (5n^2 + 6n + 7) * (4n^2 + 5n + 6) =  n^5 + 5n^4 + 2n^2 + n + 6

      展开等式: = 20n^4 + 24n^3 + 28n^2 + 25n^3 + 30n^2 + 35n + 30n^2 + 36n + 42

      合并同类项:= 20n^4 + 49n^3 + 88n^2 + 71n + 42 = n^5 + 5n^4 + 2n^2 + n + 6  

      (1)   对该等式两边同时%n,只剩常数项:

             42 % n =  6 

        注:6 % n = 可为 0,1,2,3,4,5,6,所以 6 % n 最起码得为6;

      (2)  再对该等式两边同时除以n,然后再对同时%n:

           (71 + 42/n ) % n = (1 + 6/n) % n  = 1

           联立两式,解的 n = 18;

通过以上两题我们可以发现,当给出一个等式,来判断该系统采用几进制时,我们可以采用

 左边(个位*个位)% n = (个位) 右边,

{[(个位*十位)+ (十位*个位)]  +[ (个位 * 个位)/ n] } % n = (十位 + 个位/n ) % n

这两个等式来解决此问题。


  

<think>好的,我现在需要解决这个问题:给定两个正整数x和y,用C++找到非负整数k,使得(x + k) + (y + k)等于(x + k)异或(y + k)。并且要处理多组测试样例。首先,我得理解题目要求,然后找出解决方法,最后用C++实现。 首先,题目中的等式是(x + k) + (y + k) = (x + k) ^ (y + k)。根据位运算的知识,知道对于两个数a和b,a + b等于a ^ b加上两倍的a & b。因为异或运算相当于不进位的加法,而进位部分则是a & b左移一位。所以,a + b = (a ^ b) + 2*(a & b)。因此,当a + b等于a ^ b时,必须有a & b等于0。也就是说,这两个数的二进制位在任何位上都不同时为1。 所以,原等式成立的条件是(x + k) & (y + k) == 0。接下来,我需要找到满足这个条件的k的非负整数解。 接下来,我需要找到如何确定k的值。因为k同时被加到x和y上,所以必须让x + k和y + k在二进制上没有重叠的1。也就是说,对于每一位来说,x + k和y + k中最多有一个在该位上有1。 但直接处理这个条件可能比较复杂。或许可以考虑将x和y转换为二进制,并找出它们共同为1的位。因为在那些位上,无论怎么加k,这两个数在该位上可能都会保留1,从而导致结果不为0。因此,可能需要消除这些共同为1的位。 举个例子,假设x和y在某个位上都是1,那么不管k如何增加,当k足够大时,可能会进位,但需要具体分析。或者,可能这些共同为1的位必须被消除,否则无法满足条件。也就是说,x和y的二进制位中,如果有某一位同时为1,那么无论如何加k,在该位上x + k和y + k是否可能不同时为1? 或者,可能只有当x和y在某个位上同时为1时,无论k怎么加,这两个数在该位相加后的结果可能导致进位,从而使得x+k和y+k在该位上出现同时为1的情况?或者,可能只有当x和y的某些位上有重叠的1时,才无法找到k使得它们的和与异或相等? 这里可能需要更深入的分析。假设x和y的二进制中的某些位上有同时为1的情况。那么,当加上k之后,是否有可能让这些位的进位使得x + k和y + k的相应位不再同时为1? 例如,假设x和y在第i位都是1。此时,无论k是多少,x + k和y + k的第i位可能会因为进位而改变。比如,如果k的低位使得x + k在该位产生进位,那么该位会被清零,而更高位会被加1。这可能影响后续的位。 这似乎比较复杂,可能需要找出x和y的公共为1的最低位,并确定k的最小值,使得在加上k后,这些位的进位使得x +k和y +k没有重叠的1。 或者,另一个思路是:要满足(x +k) & (y +k)=0,那么对于每一位来说,x +k和y +k在该位上不能同时为1。也就是说,对于每一位i,要么x +k的第i位是0,要么y +k的第i位是0,或者两者都是0。 此时,可以逐个位分析,找到必须满足的条件。例如,对于某一位i,如果x和y在该位的原始值都为1,那么无论k的该位是0还是1,x +k和y +k在该位可能都会有进位的问题,导致该位在x +k和y +k中的值为0或者1,需要具体看进位情况。 这似乎很复杂。或许我们可以找出x和y的按位或的结果中的那些1的位置,然后找出一个k,使得在加上k之后,这些位置上的进位能够消除重叠的1。 例如,假设x和y的二进制表示为某些位上有重叠的1。那么,当k足够大时,加上k之后,x +k和y +k的进位可能使得这些位的高位被设置,而低位的重叠被消除。但如何具体确定k的值呢? 或者,可以将问题转化为寻找k的最小值,使得(x +k) & (y +k) =0。或者,是否存在这样的k,如果存在,找出所有满足条件的k的可能值? 这里可能需要找到x和y的二进制中共同为1的位的位置。例如,假设x和y在某个位上同时为1,那么不管k如何,当加上k后,这两个数的该位是否有可能都为0?或者是否必须在该位的高位上有进位? 例如,假设x的二进制是0110,y的二进制是0101。它们的共同为1的位是第2位(从0开始计算,比如最低位是第0位)。此时,需要找一个k,使得当x+k和y+k相加时,它们的共同位不再同时为1。 或许,正确的条件是x和y的二进制中没有共同为1的位,即x & y ==0。此时,对于k=0,等式成立。但问题中给出的x和y是任意的正整数,可能它们的共同位存在1的情况,所以此时必须找到k使得加上k之后,它们的共同位被消除。 但可能当x和y的共同位存在1时,这样的k不存在?或者可能存在? 比如,假设x=1,y=1。那么x和y的二进制在第0位都是1。此时,对于任何k,x+k和y+k在第0位是否可能不同时为1? 比如k=0时,x+0=1,y+0=1,异或的话是0,但和是2,显然不满足等式等式左边是2,右边是0,不等于。此时需要找到k的值,使得(x +k)+(y +k)等于(x +k)^(y +k)。 假设k=1,则x+k=2,y+k=2。它们的和是4,异或是0,同样不满足。k=2,x+k=3,y+k=3,和是6,异或0,也不满足。所以对于x=1,y=1的情况,是否没有解? 或者,有没有可能找到更大的k,使得x+k和y+k在二进制中没有共同的1? 比如x=3(二进制11),y=3。x+k和y+k的值是3+k。要使得这两个数的按位与为0,必须3+k等于0?这显然不可能,因为k是非负整数。所以此时无解? 这说明当x和y有共同的二进制位为1时,可能不存在满足条件的k。 那是否只有当x和y的按位与为0时,才能存在k=0满足条件?否则,当x和y的按位与不为0时,必须找到一个k,使得在加上k之后,两者的按位与为0? 那是否可能? 例如,假设x=2(10),y=3(11)。它们的按位与是 10 & 11= 10,即2。此时,如果k=1,则x+k=3(11),y+k=4(100)。两者的按位与是11 & 100=0,满足条件。此时,等式成立吗? (x +k)+(y +k)=3+4=7,(x +k)^(y +k)=3^4=7。此时等式成立。所以,当x=2,y=3,k=1时满足条件。 这说明,当x和y存在共同为1的位时,可能仍然存在满足条件的k。比如上面的例子,x=2和y=3,它们的按位与是2,但存在k=1使得它们的和与异或相等。 这时候,原来的思路可能需要调整。因为在这种情况下,x和y的某些位是重叠的,但通过加上k之后,这些重叠的位可能因为进位而被消除。 所以,必须找到一个k,使得在x+k和y+k的二进制表示中,每一位上不同时为1。那么,如何找到这样的k? 现在需要将问题转化为,找到k使得对于所有的i位,x+k的第i位和y+k的第i位不同时为1。 这可能比较复杂。或许可以考虑x和y的二进制各位的情况,并找出k必须满足的条件。 另一个思路是:x +k和y +k的二进制各位不能同时为1。这等价于(x +k) & (y +k) =0。即,这两个数的按位与为0。 这条件可以转化为:对于每一位i,x +k的第i位和y +k的第i位不能同时为1。也就是说,x +k和y +k的二进制位没有重叠的1。 现在的问题是,如何确定k的值,使得这个条件成立。 这可能涉及到进位的问题。例如,当我们在某一位加上k的对应位时,可能会引起低位的进位。 例如,x=2(10),y=3(11)。它们的二进制在第1位(从0开始)都有1吗?x的二进制10,即第1位是1。y的二进制11,第0位和第1位都是1。所以在第1位,x和y都有1。此时,如果k=1,那么x +k=3(11),y +k=4(100)。此时,x+k的第1位是1,y +k的第1位是0。这样它们的该位不同时为1。所以这说明,即使x和y在某个位上有共同的1,加上k之后可能进位,使得该位变成0,而更高位被设置。 这说明,当x和y在某个位上有共同的1时,可以通过加上k使得该位进位,从而在更高位进行处理,使得最终两者的二进制位没有重叠的1。 那么,如何系统地找到这样的k? 或许可以找出x和y的二进制中所有共同为1的位,并确定需要在这些位的位置上加上足够的k,使得进位后这些位不再有重叠的1。 例如,假设x和y在某一位i上有共同的1。那么,要让x +k和y +k在i位上的值为0,并产生进位。这可能需要k的低位足够大,使得在加到x和y时,该位被进位。例如,当k的低i位全为1时,加上k会导致该位的进位。 例如,假设x=2(10),y=3(11)的共同位是第1位。那么,如果k=1(二进制1),则x +k=3(11),y +k=4(100)。此时,x +k的第1位是1,但y +k的第1位是0。因此,他们的第1位不同时为1。这符合条件。 那么,这种情况下,k的取值需要让x +k和y +k的共同位被进位消除。 现在的问题转化为如何找到这样的k。可能需要找到所有共同为1的位的最低位置,并构造k的值,使得这些位被进位。 另一个思路是,当x和y的按位与的结果为s,那么我们需要找到k,使得在x +k和y +k的二进制中,s的每一位都被进位处理,使得这些位不再同时为1。例如,对于s的每一位i,如果x和y在该位都为1,那么在加上k之后,该位的进位应该导致该位在x +k和y +k中不同时为1。 为了处理这些共同为1的位,可以找到它们的最高位,然后构造k的值,使得在加上k之后,这些位被进位到更高位。例如,假设共同位的最低位是m,那么k需要满足k >= (1 << m) - (x & ((1 << (m+1)) -1))。或者类似的条件。 这可能比较复杂。或许可以找到共同位的最低位,然后构造k的最小值,使得该位进位,然后更高位的共同位也被处理。 例如,假设x=3(11),y=3(11),那么它们的共同位是0和1位。要找到k使得x +k和y +k的每一位都没有共同的1。例如,当k=1时,x +k=4(100),y +k=4(100)。此时,他们的共同位是2位,所以按位与是4 &4=4,不等于0。这不符合条件。当k=2,x+2=5(101), y+2=5(101),按位与5&5=5,仍然不符合。当k=3,x+3=6(110),y+3=6(110),同样按位与为6。这说明对于x=y=3的情况,可能没有k满足条件? 或者是否存在更大的k?例如,k=4,则x+4=7(111),y+4=7。它们的按位与是7,不等于0。所以这种情况下,可能没有解? 这说明当x和y的共同位无法通过进位消除时,可能没有解。那如何判断是否存在解? 这可能需要更深入的分析。假设x和y的共同位的最低位是m,那么我们需要k满足k >= ( (1 << m) - (x & ( (1 << (m+1)) -1 )) ),同时,类似的条件对于更高位的共同位也成立? 这可能需要一些位操作技巧。例如,我们可以将x和y的二进制中共同为1的位找出来,然后构造k的值,使得在这些共同位的位置上,x +k和y +k的该位被进位,从而变成0,而更高位可能被设置。例如,假设共同位的最低位是m,那么k的最小值应该是 (1 << m) - (x & ( (1 << m) -1 )) 。或者,更简单地说,k必须满足x +k和y +k在m位之后(包括m位)的位都被进位处理。 例如,对于x=2(10),y=3(11),他们的共同位是第1位(从0开始)。共同位的最低位是第1位。此时,k的最小值应该是 (1 <<1) - (x & ( (1 <<1) -1 )) ,即 2 - (2 &1) =2-0=2? 但是前面例子中k=1就满足条件。所以这可能不正确。 或者,可能应该计算k的最小值,使得当k加上x和y后,在共同位的最低位m处发生进位。例如,对于x=2,y=3的共同位是第1位。此时,x在该位是1,y在该位是1。要使得x +k和y +k在第1位都产生进位。因为x=10,y=11。此时,对于x,当k的二进制低两位是 10时,x +k的低两位之和是10 + 10= 100,即进位到第2位。同时,y的二进制11,加上k=10,得到101(即5),其中第1位是0。因此,此时x +k=10 + 10= 100(4),而 y +k=11 +10= 101(5)。此时,它们的二进制分别为100和101。按位与是100 & 101=100,即4,这并不等于0。这说明上述思路可能有错误。 但之前的例子中,当k=1时,x +k=3(11),y +k=4(100),它们的按位与是0。这说明,当k=1时,共同位的最低位是第1位,而k的值可能使得该位的进位发生,从而消除两者的共同位。 那如何找到这样的k? 可能正确的思路是,找到x和y的异或值,并确保在加上k之后,x +k和y +k的二进制没有重叠的1。这可能涉及到某些位运算的规律。 或者,观察等式(x +k) + (y +k) = (x +k) ^ (y +k)。等式左边等于x + y + 2k,右边等于异或的结果。而根据前面的推导,当且仅当(x +k) & (y +k) =0时等式成立。所以,问题转化为找到k使得(x +k) & (y +k) =0。 现在,如何找到这样的k? 另一个思路是,注意到(x +k) & (y +k) =0等价于,对于每一位i,(x +k)的第i位和(y +k)的第i位不能同时为1。所以,必须满足对于每一位i,(x的第i位 + k的第i位的进位调整后的值) 和 (y的第i位 + k的第i位的进位调整后的值) 不同时为1。这可能很难直接处理。 或许可以换一种方式:当且仅当 (x +k) & (y +k) =0时,它们的和等于它们的异或。那么,可以转换条件为:对于所有位i,x +k和y +k在该位不同时为1。 现在,如何将x和y的位转换为x +k和y +k的位? 这需要考虑k的每一位对x和y的每一位的影响,以及进位问题。这可能非常复杂。 或许,可以找到一个k,使得x +k和y +k的二进制中,x和y的所有共同为1的位都被进位消除。例如,当x和y的某一位都是1时,k必须使得该位在相加时进位,从而变为0,并在更高位加1。例如,对于共同位i,k的二进制低位必须足够大,使得x +k和y +k在该位产生进位。 例如,当x和y的某位i都为1时,我们需要x +k在该位为0,并且进位到i+1位。同样,y +k在该位也为0,进位到i+1位。这样,这两个数在i位的值都为0,满足条件。但是,进位到i+1位可能导致更高位的冲突,所以必须确保进位后的更高位也不产生共同的1。 这可能是一个递归的过程,需要从最低位开始处理共同为1的位,并设置k的值,使得进位处理掉这些共同位,同时不影响更高位的处理。 例如,假设x和y的共同位有i位和j位,其中i < j。那么,处理i位需要设置k的低i位为全1,使得在i位相加时产生进位。这样,进位可能会影响到更高位的处理。例如,当处理i位时,进位到i+1位,可能导致i+1位的x和y原本可能不是共同位,但因为进位后的值可能成为共同位。这会导致更高位的处理。 这似乎需要从最低的共有位开始,逐位处理,确保进位后的更高位没有新的共有位产生。 举个例子,x=5(101),y=3(011)。它们的共有位是第0位(1)。处理该位,需要k的低0位为1。这样,x +k和y +k的第0位变为0,进位到第1位。此时,x +k在第1位的值变为0 +进位,而y +k在第1位的值变为1 +进位。这样可能会导致第1位成为共有位? 这可能变得很复杂。或许,正确的做法是,只有当x和y的所有共有位都可以通过进位消除,并且进位不会引入新的共有位时,才存在k。否则,无解。 例如,x=2(10),y=3(11)共有位是第1位。当k=1,x +k=3(11),y +k=4(100)。此时,共有位是第1位(x+k的第1位是1, y+k的第1位是0),所以它们的按位与为0。这说明在这种情况下,进位处理了共有位,而没有引入新的共有位。 那如何系统化这个过程? 可能正确的步骤是: 1. 找出x和y的共同位集合,即x & y的结果中的1的位置。 2. 对于这些共同位,必须确保在加上k之后,这些位在x +k和y +k中不同时为1。 3. 由于k的加法可能引发进位,需要找到k的最小值,使得这些进位处理掉所有的共同位。 4. 如果无法处理所有共同位,则无解。 例如,假设共同位的最低位是m。那么,为了处理这个位,k必须使得当x +k和y +k时,该位进位,变为0,并且进位到m+1位。此时,k需要满足: k >= (1 << (m + 1)) - x_bit_m_part 其中x_bit_m_part是x在m位以下的部分。类似地,对于y来说也是如此? 或者,更准确地说,k需要使得x +k在m位处产生进位。这要求x的低m位之和加上k的低m位之和大于等于 1 << (m+1)。这可能比较复杂。 例如,当共同位是m位,x和y在该位都为1。为了使得x +k在该位进位,需要x +k的低m位总和 >= (1 << (m+1))。同样的,y +k也需要满足该条件? 这可能很难,因为k需要同时满足x和y的条件。 或者,另一个思路是,必须确保在加上k之后,x +k和y +k的m位都是0,并且进位到m+1位。这样,该位的值在x +k和y +k中都是0,从而满足条件。为此,k必须使得x +k的二进制m位为0,并且y +k的二进制m位也为0。这可能需要x的低m+1位加上k的低m+1位等于某个特定值。 例如,对于x的低m+1位来说,假设这些位组成的数是x_part,那么k_part(k的低m+1位)需要满足x_part + k_part = 1 << (m+1)。同样,y_part + k_part = 1 << (m+1)。这可能只有在x_part == y_part时才有可能。例如,x和y的低m+1位相同,那么k_part = (1 << (m+1)) - x_part。这时,x +k和y +k的低m+1位都是0,并且进位到m+1位。 所以,当x和y的低m+1位相同时,才可能找到一个k_part使得x +k和y +k的低m+1位都变成0,并进位。否则,无法满足条件。 例如,当x=2(10),y=3(11),共同位是第1位。此时,m=1。x的低m+1位是2(即10),而y的低m+1位是3(11)。不相同,所以无法找到k_part使得x_part +k_part和y_part +k_part都等于 1 << (m+1)=4。例如,x_part=2,需要k_part=2,这样x_part +k_part=4。而y_part=3,k_part=2的话,y_part +k_part=5,其低2位是01,进位到第2位。此时,x +k=4(100),y +k=5(101)。它们的第1位都是0,所以满足条件。所以,在这种情况下,虽然x_part和y_part不同,但加上k_part之后,它们的该位都为0。这说明前面的条件可能不正确,或者需要更详细的分析。 这可能意味着,当共同位m存在时,k必须使得在m位及以下的所有位中,x +k和y +k的相应位都为零,并且进位到m+1位。这可能要求k的低m+1位等于 ( (1 << (m+1)) ) - x的低m+1位的最小值,并同时满足同样的条件对y来说? 或者,可能必须保证在共同位m处,x +k和y +k的该位都变为0,并且进位到更高位。这需要k的低m+1位足够大,使得x +k和y +k的该位产生进位。 例如,在共同位m处,x的该位为1,y的该位为1。为了使得x +k和y +k的该位都为0,需要: x +k的该位为0,并且有进位到m+1位。同样,y +k的该位也为0,并且有进位到m+1位。 这要求k的低m位的数值使得,当加到x的低m位时,产生进位到m+1位,并且同样的k加到y的低m位时,也产生进位到m+1位。 例如,假设m=1。x的低m+1位(即0到1位)的值为x_low。y的低m+1位的值为y_low。k的低m+1位为k_low。需要满足x_low + k_low >= 2^{m+1}(即进位到m+1位),同时y_low +k_low >= 2^{m+1}。此时,x +k的m位会被清零,并进位到高位,同样y +k的m位也被清零。 这样,k_low的最小值应该是 max(2^{m+1} -x_low, 2^{m+1} - y_low)。如果这二者中的最大值超过2^{m+1} -1,则无法满足,因为k_low最多是2^{m+1} -1(因为m+1位以下的数值)。 例如,x_low=2(二进制10),y_low=3(二进制11),m=1。此时,2^{m+1}=4。所以,k_low需要 >= max(4-2=2, 4-3=1) →2。k_low可以取2。此时,x_low +k_low=4 →进位到m+1位,且低两位清零。y_low +k_low=5 →二进制101,低两位是01,进位到第二位。这样,在m=1位,x +k的该位是0,而y +k的该位是0吗? x_low是2,k_low是2,总和是4 →二进制100。所以,在m=1位(即第二位,因为从0开始),该位是1,但这是进位到第三位?或者,假设m=1,则低两位是0和1位。2^{m+1}=4,即三位中的第三位? 这里可能需要澄清位的索引。例如,m位的索引是i,那么该位的位置是2^i。比如,i=0是第一位(1),i=1是第二位(2),i=2是第三位(4),依此类推。 假设在m位,x和y都有1。要使得x +k和y +k的该位都为0,需要x +k在该位的进位导致该位被清零,并进位到m+1位。同样的,y +k也要进位到m+1位。这要求: x_low +k_low >= 2^{m+1} y_low +k_low >= 2^{m+1} 其中,x_low是x的低m+1位的数值,y_low同理。 此时,k_low的最小可能值是 max(2^{m+1} -x_low, 2^{m+1} -y_low)。但k_low必须是一个非负整数,并且不能超过2^{m+1} -1,否则会导致更高位的进位。 例如,在之前的例子中,x=2,y=3,m=1。x_low=2(10),y_low=3(11),m+1=2。所以,k_low的最小值是max(4-2=2,4-3=1)=2。k_low=2是合法的,因为 2 <=3(2^{m+1}-1=3)。 所以,k的低m+1位必须等于2。此时,x +k的低m+1位是0(2+2=4 →100,低两位是00),进位到m+1位。y +k的低m+1位是3+2=5 →101,低两位是01,进位到m+1位吗?此时,5的二进制101,所以进位到第二位吗?这可能要看具体怎么算进位。如果k_low是2(10),那么x +k_low=2+2=4 →100,进位到第三位(即m+1位是第二位?)。这里可能需要重新理解位的进位。 或者,可能这里的进位是到m+1位。例如,当处理m=1位时,进位到m+1=2位。此时,k_low必须满足x_low +k_low >= 2^{m+1} →即当m=1时,2^{m+1}=4。所以,x_low +k_low >=4。同样,y_low +k_low >=4。 当k_low=2时,x_low=2 →2+2=4,满足条件。y_low=3 →3+2=5 >=4,也满足条件。所以,此时,x +k_low的低m+1位是0,且y +k_low的低m+1位是1(即5的二进制101,低两位是01?或者低三位是101?这可能存在理解上的差异)。 可能我的分析存在错误,这需要更仔细的推导。 假设共同位是m位,x和y在该位都为1。要使得x +k和y +k的m位都为0,必须满足: 在加法x +k时,m位及更低位相加的结果 >= 2^{m+1},导致进位到m+1位,从而m位被清零。同样,y +k时也必须满足同样的条件。 所以,k必须满足: x & ( (1 << (m+1)) -1 ) + k >= (1 << (m+1)) y & ( (1 << (m+1)) -1 ) +k >= (1 << (m+1)) 其中,x & ((1<< (m+1)) -1 ) 是x的低m+1位的值,记为x_low。同理,y_low = y & ((1<< (m+1)) -1 )。 那么,k必须满足: k >= (1<< (m+1)) - x_low k >= (1<< (m+1)) - y_low 同时,k的低m+1位必须等于某个值,以满足上述两个条件。所以,k的最小可能值在低m+1位部分是 max( (1<<(m+1)) -x_low, (1<<(m+1)) -y_low )。而k的高位部分可以任意,只要满足其他位的条件。 但此时,处理完m位之后,可能会在高位引入新的共同位。例如,进位到m+1位后,x +k和y +k的m+1位可能都为1,从而成为新的共同位。 因此,处理完一个共同位后,必须检查更高位是否存在新的共同位,并递归处理。 这可能是一个逐步处理各个共同位的过程: 1. 计算s = x & y。如果s ==0,则k可以是0,此时满足条件。否则,继续。 2. 找到s的最低位m。 3. 计算所需的k的低m+1位的最小值:k_low_min = max( (1<< (m+1)) -x_low, (1<< (m+1)) - y_low ),其中x_low是x的低m+1位,y_low同理。 4. 设置k的值为k_low_min,并检查更高位是否引入新的共同位。 5. 递归处理更高位的共同位,直到没有共同位为止。 例如,假设x=2(10),y=3(11): s = x & y = 2 & 3 = 2 →二进制10。所以,最低共同位m=1. x_low = x & ((1 << (m+1)) -1) →x & 3 →2 &3=2. y_low = y &3 →3&3=3. k_low_min = max(4-2=2,4-3=1) →2. 所以,k必须至少是2,并且低2位是10。此时,x +k=4 →100,y +k=5 →101。它们的二进制位: x +k: 100 y +k: 101 此时,x +k & y +k = 100 & 101 = 100 →4,不是0。这说明还有共同位? 哦,这显然与之前的例子冲突。之前的例子中,当k=1时,x=2+1=3(11),y=3+1=4(100),它们的按位与是0。这说明我的当前思路可能有错误。 这说明,当k_low_min=2时,得到的结果并不满足条件,但在k=1时满足条件。这显然表明我的分析有误。 那问题出在哪里? 可能我的分析中,假设处理m位时需要k的低m+1位为某个值,但实际上,正确的k可能不需要处理所有共同位,而只需要找到k使得所有共同位都被进位处理,无论顺序如何? 或者,可能应该从最高位开始处理? 或者,这个问题的解决方式可能更简单。例如,观察到只有当x和y的某个位同时为1时,必须保证在k的加法中,该位被进位处理,使得该位在x +k和y +k中为0。因此,k必须满足对于每一位i,如果x和y在i位都为1,那么在x +k和y +k中,i位必须为0。 这可能可以通过设置k的某些位为1来实现。例如,k的最低有效位应该是所有共同位的最低位所在的位置的掩码。例如,如果共同位的最低位是m,那么k的最低位应该是1<<m,或者某种掩码。 或者,可能正确的k的取值是 (x & y) <<1 ? 例如,在x=2,y=3的例子中,x & y=2,k=2<<1=4?这似乎与之前的例子不符。或者可能k= (x & y) 的补码? 这可能需要另一个思路。例如,观察k必须满足: (x +k) & (y +k) =0 → x +k和y +k的二进制没有重叠的1。这可能意味着,x +k和y +k的和等于它们的异或。所以,此时x +k和y +k的和等于异或值,即它们的按位与为0。 现在,假设k存在,那么: x +k + y +k = (x +k) ^ (y +k) 左边等于x + y + 2k,右边等于(x +k) ^ (y +k)。而右边等于x ^ y,因为当x +k和y +k的按位与为0时,它们的异或等于它们的和。这可能对吗? 或者,假设a和b的按位与为0,那么a + b = a ^ b。这可能正确,因为在这种情况下,没有进位发生,所以加法等于异或。 所以,原式左边等于x + y +2k,右边等于 (x +k) ^ (y +k) = (x ^ y) + 0(因为当a和b的按位与为0时,a ^ b = a + b)。 所以,等式变为: x + y + 2k = (x +k) ^ (y +k) 而根据之前的条件,(x +k) & (y +k)=0。所以,在这种情况下,(x +k) ^ (y +k) = (x +k) + (y +k) = x + y + 2k。这等式成立。所以,只要满足(x +k) & (y +k)=0,等式就成立。 因此,现在的问题转化为寻找k,使得(x +k) & (y +k) =0。 这可能更容易处理。例如,假设x和y的二进制中有共同位,那么必须保证在加上k之后,这些共同位被清零,并且进位不会导致新的共同位。 或者,可以将问题转化为:寻找k,使得 (x +k) & (y +k) =0。这相当于寻找k,使得对于每一个位i,(x +k)的第i位和(y +k)的第i位不同时为1。 这可能可以通过位运算的技巧来解决。例如,假设x和y的某个位i都为1,则无论k的该位是什么,在x +k和y +k的该位,可能都会出现进位的情况。例如,如果k的该位是1,则x +k的该位是0,并进位到高位。同理,y +k的该位也会变成0,并进位。这样,这两位会被清零,进位到高位。这样,这两位在x +k和y +k中都是0,满足条件。但是进位到高位可能导致高位出现新的共同位。 例如,假设x=3(11),y=3(11),共同位是0和1。如果我们取k=1,那么x +k=4(100),y +k=4(100),它们的按位与是4,不为0。这说明在这种情况下,即使共同位的最低位是0,取k=1仍无法满足条件。因此,必须确保所有共同位都被处理,并且进位不会导致新的共同位。 这可能需要递归处理每一位。例如,找到最低的共同位m,构造一个k_min,使得处理该位之后,更高位的共同位也被处理。 例如,k的构造可以是这样的: k = ( (x & y) << 1 ) - x - y 或者,这可能是一个可能的解法,但需要验证。 例如,对于x=2和y=3,x & y=2。所以,k= (2<<1) -2-3=4-2-3= -1。这显然不符合非负的条件。 所以,这可能不是一个正确的解法。 另一个可能的方法是,找出x和y的共同位,然后构造k使得这些共同位被掩码覆盖。例如,k的二进制中,所有共同位的低位都设置为1,以便进位到共同位的下一个位。 例如,x=2(10),y=3(11),共同位是第1位。所以,k的二进制可能需要在第0位设置为1。这样,x +k=3(11),y +k=4(100)。它们的共同位此时是第1位? x +k是11,y +k是100。它们的按位与是0。这满足条件。此时,k=1,二进制1。 所以,这里k的值等于共同位的最低位对应的1的位置减去1? 或者,k等于共同位的最低位对应的掩码减x和y在该位置的部分? 这可能需要更深入的思考。 另一个可能的思路是,k必须等于 (x | y) - (x & y) ) 或者类似的结构。例如,x | y是3,x & y是2。3-2=1,即k=1,这确实在例子中有效。 但为什么?这里,x | y是3,x & y是2。3-2=1。这是否适用于其他例子? 例如,x=5(101),y=3(011),共同位是0位。x | y=7,x & y=1. 7-1=6。此时,k=6。x +k=11,y +k=9。11的二进制1011,9是1001。它们的按位与是 1001 & 1011=1001,不为0。这说明这个思路可能不成立。 所以,这可能需要另一个方法。 回到最初的例子,当x=2,y=3时,k=1是解。此时,(x +k) & (y +k) =3 &4=0。那么,k=1的二进制是01。x的二进制10,y是11。共同位是10 &11=10。共同位的最低位是1位。此时,k的二进制是01,即最低位是1,此时,在加上k之后,共同位被进位处理。 这可能意味着,k需要将共同位的最低位进位,从而使得该位变为0,并进位到高位。这可能要求k的最低位的掩码是共同位的最低位掩码。 例如,共同位的最低位是m位,那么k必须满足k的二进制中,从0到m位都为1。这样,当加上k时,x和y的m位会被进位。 例如,共同位的最低位是m,那么k的最小值是 (1 << (m +1)) - max(x_low, y_low) ,其中x_low是x的低m+1位的值,y_low同理。或者,这可能更复杂。 或者,k必须满足k >= ( (x & y) << 1 )。例如,x=2,y=3,x&y=2,2<<1=4。k=4,此时x +k=6,y +k=7。它们的按位与是6 &7=6,不为0。这似乎不符合条件。所以,这个思路可能错误。 回到最初的问题,可能需要找到k,使得对于所有共同位i,在x +k和y +k中,i位都是0。这可以通过设置k的低位,使得在加上k时,这些位产生进位。 例如,共同位的最低位是m位,k必须使x +k和y +k的m位为0,并进位到m+1位。这可能需要k的m+1位以下的位全为1,并且足够大,以满足进位条件。 例如,x=2(10),共同位的最低位是1。k需要满足k的二进制在0到1位为11?即k=3。此时,x +3=5(101),y+3=6(110),它们的按位与是101 & 110=100(4),不为0。这似乎不符合条件。 而之前的正确解是k=1,此时k的二进制是01。此时,共同位的最低位是1,k的二进制在该位是0,但加上k后,x +k的该位是1,y +k的该位是0。这可能意味着,我的之前的分析存在错误。 这说明,正确的条件不是必须让共同位在k的加法后成为0,而是让x +k和y +k的该位不同时为1。所以,当x的该位为1,而y的该位为1时,加上k后,其中一个变成0,另一个变成0或1,但不同时为1。 例如,x=2(10),y=3(11)的共同位是1位(从0开始)。k=1,x +k=3(11),y +k=4(100)。x +k的1位是1,y +k的1位是0。所以不同时为1,满足条件。 所以,k的加法可以导致其中一个数的该位为0,另一个的该位为1,或者两者都为0。因此,关键在于确保在共同位中,x +k和y +k的该位不同时为1。 因此,可能正确的解法是,找到x和y的共同位,然后为每个共同位i,确保x +k和y +k的i位不同时为1。这可以通过设置k的i位为1,从而使得其中一个数的i位为0,另一个1。 例如,当共同位是i时,如果k的i位是1,那么x +k和y +k的i位可能为0和进位后的结果。或者,这可能取决于k的低位。 这似乎非常复杂,难以直接找到k的值。因此,可能需要一个系统的方法,比如迭代每一位,并确定k的哪些位必须设置。 另一个思路是,找到所有共同位,然后构造k为这些共同位的掩码的补码。或者,构造k使得在共同位上,x +k和y +k的对应位不同时置1。 例如,假设共同位的掩码是s = x & y。那么,k必须满足: (x +k) & (y +k) =0. 可以展开这个表达式: (x +k) & (y +k) = (x & y) + (x & k) + (y &k) + (k &k) = s + (x &k) + (y &k) +k. 这似乎没有帮助。 或者,可能将条件转化为: x +k和y +k必须互为补码,即它们的按位与为0。也就是说,x +k的二进制是y +k的补码。这可能只有在特定情况下成立,但可能提供某些思路。 例如,假设x +k = ~ (y +k). 但这样,它们的和是满的1,这在大多数情况下不可能。 这可能不是一个可行的思路。 回到问题,可能需要采用位操作的方法,逐步构造k的值。例如,我们可以在每个共同位i,设置k的某些位,以确保在该位上x +k和y +k的位不同时为1。 例如,对于每个共同位i,如果x的第i位是1,y的第i位也是1,那么必须确保在加上k后,其中一个数的第i位变为0,而另一个变为0或1,但不同时为1。 这可以通过设置k的i位为1,使得在加法时产生进位。例如,假设i位是共同位,k的i位设置为1。这样,在x +k和y +k的i位中,可能会产生进位,导致该位变为0,而更高位加1。这可能会影响更高位的判断。 例如,x=2(10),y=3(11),i=1位共同为1。k的i位设置为1,则k=2(10)。此时,x +k=4(100),y +k=5(101)。他们的i=1位分别为0和0?或者,x +k的二进制100,所以i=1位是0;y +k的二进制101,i=1位是0。所以,该位同时为0,满足条件。但此时,他们的按位与是100 & 101 =100,不为0。这说明k=2不满足条件。但前面的例子中k=1时满足条件。 这说明,设置k的i位为1并不总是正确的做法。因此,需要另一个策略。 可能正确的解法是,找到所有共同位的最低位,并构造k使得该位被进位处理,然后在更高位递归处理。 例如,假设共同位的最低位是m。构造k为(1<<m) - (x & ((1 <<m) -1)),或者类似的值。然后,在更高位处理新的共同位。 这可能是一个递归的过程: function find_k(x, y): s = x & y if s ==0: return 0 m = find_lowest_set_bit(s) mask = (1 << m) -1 x_low = x & mask y_low = y & mask required = (1 << m) - max(x_low, y_low) k = required + find_k( (x + required) >> (m+1), (y + required) >> (m+1) ) << (m+1) return k 这可能需要验证。 例如,对于x=2,y=3: s=2, m=1. mask = (1<<1) -1 =1. x_low =2 &1=0. y_low=3&1=1. required= (2) - max(0,1)=2-1=1. k=1 + find_k( (2+1) >>2=3>>2=0, (3+1)>>2=4>>2=1) <<2. 递归调用find_k(0,1). s=0,返回0. 所以k=1 +0<<2=1. 这与正确的k=1相符。 另一个例子,x=5(101),y=3(011): s=1 (共同位是0位). m=0. mask=1-1=0. x_low=5&0=0. y_low=3&0=0. required=1 - max(0,0)=1. 递归处理 (5+1)/1=6, (3+1)/1=4. find_k(6,4). 此时,s=6&4=4. m=2 (因为4的二进制100,最低位是2位). mask= (1<<2) -1=3. x_low=6 &3= 6 mod4=2. y_low=4&3=0. required= (4) - max(2,0)=4-2=2. 递归处理 (6+2)>>3=8>>3=1, (4+2)>>3=6>>3=0. find_k(1,0). s=0,返回0. 所以k=2 +0<<3=2. 总k=1(第一次递归的required) + (2<<1)? 这里的递归可能比较复杂,需要详细计算。 可能这个算法是正确的,但需要仔细验证。 综上,正确的解法可能是递归处理共同位的最低位,计算所需k的最低部分,然后递归处理高位部分。 现在,我需要将这个算法转换为C++代码,并且处理多组测试用例。 实现步骤: 1. 对于每组x和y,计算它们的共同位s = x & y. 2. 如果s为0,则k=0是唯一的解。 3. 否则,找到共同位的最低位m. 4. 计算该位所需的k的最低部分required = (1 << m) - max(x_low, y_low),其中x_low和y_low分别是x和y的低m位的值。 5. 将x和y加上required,右移m+1位,得到新的x'和y',递归计算高位的k_high. 6. 最终的k是required + (k_high << (m+1)). 7. 如果无法找到这样的k(例如,递归中的某个步骤导致无法满足条件),则返回-1或无解。 但需要确保递归步骤不会导致死循环,并且能够正确覆盖所有共同位。 现在,用C++实现这个递归算法: 首先,编写函数来找到共同位的最低位: int find_lowest_set_bit(int s) { return s & -s; } 这个函数返回s的最低设置位,例如,s=2(10),返回2(10);s=4(100),返回4(100). 然后,递归函数: long long find_k(int x, int y) { long long s = x & y; if (s ==0) { return 0; } int m_bit = find_lowest_set_bit(s); // 例如,s=2,返回2. int m = log2(m_bit); // 例如,m=1. int mask = (1 << m) -1; int x_low = x & mask; int y_low = y & mask; int required = (1 << m) - max(x_low, y_low); // 新的x和y右移m+1位 int new_x = (x + required) >> (m+1); int new_y = (y + required) >> (m+1); long long k_high = find_k(new_x, new_y); return required + (k_high << (m+1)); } 这可能存在错误,例如,在计算mask时,m是log2(m_bit),这可能有错误。例如,m_bit=2时,log2(2)=1,mask=2^1 -1=1,即mask=1。而x_low是x &1,即最低位的值。这可能正确。 测试这个函数: 测试x=2,y=3: s=2 &3=2. m_bit=2,log2(2)=1 →m=1. mask=1. x_low=2&1=0. y_low=3&1=1. required=2 - max(0,1)=2-1=1. new_x=(2+1)>>2=3>>2=0. new_y=(3+1)>>2=4>>2=1. 递归调用find_k(0,1). s=0&1=0,返回0. 总k=1 + (0 <<2) =1。正确。 另一个测试,x=5(101),y=3(011): s=1 &3=1. m_bit=1, m=0. mask=0. x_low=5 &0=0. y_low=3 &0=0. required=1 - max(0,0)=1-0=1. new_x=(5+1)>>1=6>>1=3. new_y=(3+1)>>1=4>>1=2. 递归调用find_k(3,2). s=3&2=2. m_bit=2 →m=1. mask=1. x_low=3&1=1. y_low=2&1=0. required=2- max(1,0)=2-1=1. new_x=(3+1)>>2=4>>2=1. new_y=(2+1)>>2=3>>2=0. 递归调用find_k(1,0). s=0,返回0. 总k_high=0. 所以,此时的k是1 + (0 <<2) =1. 总k=1(来自第一次递归) + (1 <<1)=1+2=3? 或者,这个递归的层次可能需要重新计算: 原函数返回 required + (k_high << (m+1))。在第一层递归: required=1,m=0,m+1=1. 递归调用后的k_high=1(来自第二次递归的 required=1)? 或者,可能我需要重新走一遍递归流程: x=5,y=3 →第一次递归: s=1. m=0. required=1. new_x=6>>1=3, new_y=4>>1=2. 调用 find_k(3,2). 在 find_k(3,2): s=3&2=2. m_bit=2 →m=1. required=2 - max(3&1=3%2=1, 2&1=0) →2 -1=1. new_x=(3+1)>> (1+1)=4>>2=1. new_y= (2+1)>>2=3>>2=0. 调用 find_k(1,0). 此时,s=0,返回0. 所以,k_high=0. 返回 required=1 + (0 <<2) =1. 所以,总k在第一次递归层是1 + (1 <<1) =1 +2=3. 所以,k=3.此时,x +k=5+3=8(1000),y +k=3+3=6(0110). 它们的按位与是 1000 & 0110 =0000。满足条件。所以,k=3是解。 这说明,当x=5,y=3时,k=3是解。 这似乎正确。 另一个测试案例:x=3,y=3. find_k(3,3): s=3. m_bit=1 →m=0. required=1 - max(3 &0=0,3&0=0) →1-0=1. new_x=4>>1=2, new_y=4>>1=2. 递归调用 find_k(2,2). 此时,s=2 &2=2. m_bit=2 →m=1. required=2 - max(2&1=0, 2&1=0)=2-0=2. new_x=(2+2)>>2=4>>2=1. new_y=(2+2)>>2=1. 递归调用 find_k(1,1). s=1. m=0. required=1 - max(1&0=0,1&0=0)=1. new_x=2>>1=1, new_y=2>>1=1. 递归调用 find_k(1,1). 这将进入无限递归,因为每次调用都会返回 required=1,并且新的x和y总是11. 这说明,当x和y的所有共同位无法通过进位消除时,该算法将无法找到解,导致无限递归。例如,当x=3,y=3时,任何k都无法满足条件,因为加上k后,x +k和y +k的二进制必然在某个位上有共同的1。 因此,必须修改算法,以处理无解的情况。 如何检测无解的情况? 在递归过程中,如果新的x和y加上 required后的结果导致新的共同位,并且无法消除,例如,当x和y相等且存在共同位时,递归可能无法终止。 因此,需要检测是否在递归过程中出现循环或者无法产生解的情况。 例如,当新的x和y等于原来的x和y时,说明无法找到解,应该返回-1或标记无解。 因此,需要修改算法,添加终止条件,例如,当x和 y在递归调用中保持不变,或者某个递归深度超过一定限制时,返回-1。 这可能比较复杂。或者,在每次递归调用时,检查新的x和 y是否仍然有共同位,并且无法通过 required的加法消除。 这可能比较困难。 或者,可以观察到,当x和 y的某一位之后的所有共同位都被处理,但在更高位出现无法处理的共同位时,问题无解。 例如,x=3,y=3: 在第一次递归调用后,x=2,y=2. 第二次递归调用后,x=1,y=1. 第三次调用后,x=1+1=2 >>1=1,y=1+1=2 >>1=1. 无限循环。 因此,必须添加一个终止条件,例如,当新的x和 y与原来的x和 y相同,或者当递归深度超过某个最大值时,返回-1. 这需要修改算法以处理这种情况。 因此,在代码中,可能需要添加一个参数来跟踪递归的深度,或者在每次调用时比较新的x和 y是否等于原来的值,如果是,则返回-1。 例如: long long find_k(int x, int y, int depth) { if (depth > 32) { // 假设是32位整数 return -1; } long long s = x & y; if (s ==0) { return 0; } int m_bit = find_lowest_set_bit(s); int m = log2(m_bit); int mask = (1 << m) -1; int x_low = x & mask; int y_low = y & mask; int required = (1 << m) - max(x_low, y_low); int new_x = (x + required) >> (m+1); int new_y = (y + required) >> (m+1); if (new_x == x && new_y == y) { return -1; // 没有变化,无法处理 } long long k_high = find_k(new_x, new_y, depth+1); if (k_high == -1) { return -1; } return required + (k_high << (m+1)); } 这样,在递归调用时,如果新的x和 y与原x和 y相同,说明无法进一步处理,返回-1. 测试x=3,y=3: 第一次调用,x=3, y=3. required=1. new_x=(3+1)>>1=4>>1=2. new_y=4>>1=2. 递归调用,depth=1. s=2&2=2. required=2 - max(0,0)=2. new_x=(2+2)>>2=4>>2=1. new_y=4>>2=1. 递归调用,depth=2. s=1&1=1. required=1. new_x=(1+1)>>1=2>>1=1. new_y=2>>1=1. 此时,new_x和new_y与原x和 y(11)相同,返回-1. 所以,k_high=-1,返回-1. 最终,总k=2 + (-1 <<2) →无效。 因此,函数返回-1,表示无解。 这说明当x和 y无法找到满足条件的k时,函数返回-1。 因此,最终的C++代码需要实现这个递归函数,并处理多组测试用例,同时处理无解的情况。 综上,这个问题的解决步骤如下: 1. 找到x和 y的共同位s = x & y。如果s为0,k=0。 2. 否则,找到共同位的最低位m。 3. 计算required,使得处理该位后,该位被清零,并进位到高位。 4. 递归处理高位部分。 5. 如果递归中发现无法处理,返回-1。 因此,最终的C++代码将包含这个递归函数,并处理多组测试用例。 现在,编写C++代码: 首先,实现找到最低位的函数: int find_lowest_set_bit(int s) { return s & -s; } 然后,递归函数: #include <iostream> #include <cmath> using namespace std; long long find_k(int x, int y, int depth) { if (depth > 32) { return -1; } int s = x & y; if (s == 0) { return 0; } int m_bit = find_lowest_set_bit(s); int m = log2(m_bit); int mask = (1 << m) - 1; int x_low = x & mask; int y_low = y & mask; int required = (1 << m) - max(x_low, y_low); int new_x = (x + required) >> (m + 1); int new_y = (y + required) >> (m + 1); if (new_x == x && new_y == y) { return -1; } long long k_high = find_k(new_x, new_y, depth + 1); if (k_high == -1) { return -1; } return required + (k_high << (m + 1)); } int main() { int T; cin >> T; while (T--) { int x, y; cin >> x >> y; long long k = find_k(x, y, 0); if (k == -1) { cout << "No solution exists" << endl; } else { cout << k << endl; } } return 0; } 注意,这个代码可能需要进行调试,尤其是在处理位操作和递归时。例如,log2函数可能不准确,需要用其他方法计算m的值。 可以用位扫描来找到m的值: 例如,替换: int m = log2(m_bit); 为: int m = 0; while (m_bit >>= 1) { m++; } 这可能更可靠,因为log2可能返回浮点数,导致错误。 修改后的find_lowest_set_bit函数: int find_lowest_set_bit(int s) { return s & -s; } 然后,在递归函数中计算m: int m_bit = find_lowest_set_bit(s); int m = 0; int temp = m_bit; while (temp >>= 1) { m++; } 例如,m_bit=2(二进制10),temp初始化为2,然后右移一位得到1,循环停止,m=1,正确。 这样,可以正确计算m的值。 因此,修改后的递归函数: long long find_k(int x, int y, int depth) { if (depth > 32) { return -1; } int s = x & y; if (s == 0) { return 0; } int m_bit = find_lowest_set_bit(s); int m = 0; int temp = m_bit; while (temp >>= 1) { m++; } int mask = (1 << m) -1; int x_low = x & mask; int y_low = y & mask; int required = (1 << m) - max(x_low, y_low); int new_x = (x + required) >> (m + 1); int new_y = (y + required) >> (m + 1); if (new_x == x && new_y == y) { return -1; } long long k_high = find_k(new_x, new_y, depth + 1); if (k_high == -1) { return -1; } return required + (k_high << (m + 1)); } 这样,代码应该正确计算m的值。 综上所述,这个递归算法应该能够正确找到满足条件的k,或者在无解时返回-1。对于多组测试用例,程序将逐一处理。</think>要找到满足条件的非负整数$k$使得$(x+k)+(y+k)=(x+k)\oplus(y+k)$,需确保$(x+k)$和$(y+k)$的二进制各位不同时为1。以下是详细步骤和C++实现: ### 方法思路 1. **条件转换**:等式成立当且仅当$(x+k)\&(y+k)=0$,即它们的二进制位无重叠的1。 2. **位处理**:找出$x$和$y$的共同为1的位,通过加$k$使这些位进位清零,并递归处理更高位。 3. **递归求解**:每次处理最低的共同位,计算所需$k$的最小部分,并递归处理进位后的高位部分。 ### C++实现 ```cpp #include <iostream> #include <algorithm> using namespace std; int findLowestSetBit(int s) { return s & -s; } long long findK(int x, int y, int depth) { if (depth > 32) return -1; // 防止无限递归 int s = x & y; if (s == 0) return 0; // 无共同位,k=0 int m_bit = findLowestSetBit(s); int m = 0; int temp = m_bit; while (temp >>= 1) m++; // 计算最低位索引m int mask = (1 << m) - 1; int x_low = x & mask; int y_low = y & mask; int required = (1 << m) - max(x_low, y_low); // 计算所需k的最小部分 int new_x = (x + required) >> (m + 1); int new_y = (y + required) >> (m + 1); if (new_x == x && new_y == y) return -1; // 无变化,无法继续 long long k_high = findK(new_x, new_y, depth + 1); if (k_high == -1) return -1; return required + (k_high << (m + 1)); } int main() { int T; cin >> T; while (T--) { int x, y; cin >> x >> y; long long k = findK(x, y, 0); if (k == -1) cout << -1 << endl; else cout << k << endl; } return 0; } ``` ### 解释 1. **findLowestSetBit**:找到$x$和$y$的共同为1的最低位。 2. **findK函数**:递归处理每一位共同位,计算$k$的最小部分,确保进位后该位清零,并递归处理更高位。 3. **main函数**:处理多组输入,输出结果或-1(无解)。 ### 示例 输入: ``` 2 2 3 3 3 ``` 输出: ``` 1 -1 ``` - **案例1**:$x=2$(10), $y=3$(11),$k=1$时,$3+4=7$且异或为7,满足条件。 - **案例2**:$x=3$, $y=3$时无解,输出-1。 ### 相关问题 1. 如何验证两个数的二进制是否存在共同为1的位? 2. 当$x$和$y$较大时,如何优化递归深度? 3. 该算法的时间复杂度是多少?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值