Murray_
码龄7年
关注
提问 私信
  • 博客:234,732
    234,732
    总访问量
  • 12
    原创
  • 369,461
    排名
  • 202
    粉丝
  • 1
    铁粉

个人简介:学生,好文章搬运工,ML、CV大杂烩

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-12-25
博客简介:

Murray_的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    0
    当前总分
    6
    当月
    1
个人成就
  • 获得369次点赞
  • 内容获得69次评论
  • 获得1,325次收藏
创作历程
  • 1篇
    2024年
  • 22篇
    2018年
成就勋章
TA的专栏
  • nccl
    1篇
  • 目标检测
    2篇
  • 数据结构与算法
    1篇
  • 其他
    4篇
  • 机器学习
    11篇
  • 计算机视觉
    4篇
  • 图像算法
    1篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

nccl代码解析(1)

nccl代码解析 test。
原创
发布博客 2024.06.27 ·
308 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

Ubuntu16.04系统同时安装Anaconda2和Anaconda3

   现在很多较新的深度学习框架,检测、分割模型采用了python3,而一些比较老的框架采用Python2,所以需要在同时存在两个版本的python    先安装好Anaconda2,实用python2的相对还是多一些,然后将Anaconda3作为其环境安装在envs文件夹下。    在需要用到python3的时候实用如下命令转换    source activate py3   ...
原创
发布博客 2018.10.06 ·
1087 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

caffe 编译中出现的问题解决方法

caffe安装过程中遇到的问题,主要是各种以来源缺少,记录如下:可以将下列依赖项目都安装一遍,以防出问题安装相关依赖项sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-reco...
原创
发布博客 2018.06.21 ·
3565 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Keras fine-tuning (基于ImageNet上训练好的模型,复用)

模型文件点这里下载https://github.com/fchollet/deep-learning-models权重文件点这里下载下载好文件之后只需要在文件中将原本要从网络上下载的语句注释掉,文件路径换成自己下载好的权重文件。#WEIGHTS_PATH = 'D:/C/pythonEX/VGG16/vgg16_weights_tf_dim_ordering_tf_kernels.h5'#WEI...
原创
发布博客 2018.05.20 ·
3835 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

图像去噪算法:NL-Means和BM3D(转载+个人笔记)

       由于NL-Means是基于图像块进行搜索的,所有可以在上面的6组示例图中可以看到,权重较大是与目标点邻域相似的区域,有点类似模式识别,思路是通过高斯加权欧式距离找到曲线与与目标点邻域相似的区域,利用其信息进行去噪。...
转载
发布博客 2018.05.17 ·
6728 阅读 ·
5 点赞 ·
1 评论 ·
47 收藏

机器学习、深度学习常用库的简单总结(快速入门)

tensorflow
原创
发布博客 2018.05.11 ·
1693 阅读 ·
0 点赞 ·
1 评论 ·
13 收藏

深入浅出的讲解傅里叶变换(真正的通俗易懂)(个人总结)

1,以时间作为参照来观察动态世界的方法称为时域分析。时域分析中的一条曲线,在频域中只是一个频率值,或者一系列不同频率值得叠加(时域图中横坐标为时间,频域图中横坐标为频率)2.任何波形都可以由正弦波叠加而来。3.傅里叶变换,就是将一个时域非周期的连续信号,转换为一个在频域上非周期的连续信号原文出处: 韩昊   12345678910作 者:韩 昊知 乎:Heinrich微 博:@花生油工人知乎专栏:...
转载
发布博客 2018.05.11 ·
23171 阅读 ·
36 点赞 ·
3 评论 ·
111 收藏

ubuntu 16.04 NVIDIA 显卡驱动安装

    深度学习很多框架需要在Linux系统上运行,需要使用GPU。安装CUDA之前主要先安装NVIDIA显卡驱动,在系统中设置中更新驱动容易出现问题。要在官网上下载好驱动安装。ubuntu16.04安装英伟达显卡驱动一直出很多问题,试了网上很多方法,废了很多时间,终于搞定了,记录如下。1、查看显卡信息:$ lspci | grep VGA 2、下载驱动程序:http://www...
原创
发布博客 2018.05.09 ·
520 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习 计算机视觉资料总结(持续更新)

        在学习过程中遇到了很多不错的资源,需要整理一下,方便自己日后学习、复习。猴子聊数据分析(python numpy pandas基础知识  kaggle比赛)https://zhuanlan.zhihu.com/houzi...
原创
发布博客 2018.05.05 ·
482 阅读 ·
1 点赞 ·
1 评论 ·
7 收藏

CPU GPU 相关知识大杂烩

主频 CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象在电子技术中,...
原创
发布博客 2018.04.26 ·
679 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

奇异值分解原理(SVD)

转载自:https://www.cnblogs.com/pinard/p/6251584.html
转载
发布博客 2018.04.25 ·
363 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GPU基础知识总结

什么是 GPU 加速计算?GPU 加速计算是指同时利用图形处理器 (GPU) 和 CPU,加快科学、分析、工程、消费和企业应用程序的运行速度。GPU 加速器于 2007 年由 NVIDIA率先推出,现已在世界各地为政府实验室、高校、公司以及中小型企业的高能效数据中心提供支持。GPU 能够使从汽车、手机和平板电脑到无人机和机器人等平台的应用程序加速运行.GPU 如何加快软件应用程序的运行速度GPU ...
原创
发布博客 2018.04.17 ·
1729 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习、计算机视觉面经整理(持续完善整理中……)

      算法岗计算机视觉方向求职经验总结进入11月份,楼主找工作也基本进入尾声了,从7月份开始关注牛客网,在求职的过程中学到了不少,感谢牛客提供这样一个平台,让自己的求职历程不再孤单。 先说一下楼主教育背景,本科西部末流985,研究生调剂到帝都某文科学校.专业都是CS专业,求职方向都是计算机视觉算法。有某外企以及二线互联网实习经历,本科虽然CS出身,但实际动手能力并不强。研究生的研究方向并不是...
原创
发布博客 2018.04.15 ·
12151 阅读 ·
24 点赞 ·
3 评论 ·
149 收藏

机器学习算法工程师、计算机视觉工程师 技术路线

原创
发布博客 2018.04.15 ·
4071 阅读 ·
3 点赞 ·
0 评论 ·
28 收藏

线性判别分析LDA原理总结

转载自:https://www.cnblogs.com/pinard/p/6244265.html
转载
发布博客 2018.04.15 ·
475 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

通俗易懂的主成分分析法(PCA)详解

转载自:http://blog.codinglabs.org/articles/pca-tutorial.html文章分析脉络梳理: 1.向量A和B的内积表示的是向量A在B上的投影长度。那么将一个向量与新的基做内积,结果则表示该向量在新的基下的坐标。2.将新选定的基表示成矩阵形式,与原向量相乘,就得到了原向量在新选定的基所表示的空间(或坐标系)中的坐标表示了。3.怎样选定这组基用于数据降维?(目标...
转载
发布博客 2018.04.14 ·
156803 阅读 ·
276 点赞 ·
58 评论 ·
1108 收藏

EM算法实例通俗讲解

转载自:https://www.jianshu.com/p/1121509ac1dc如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计。个人认为,理解EM算法背后的idea,远比看懂它的数学推导重要。idea会让你有一个直观的感受,从而明白算法的合理性,数学推导只是将这种合理性用更加严谨的语言表达出来而已。打个比方,一个梨很甜,用数学的语言可以表述为糖分含量90%,但只有亲...
转载
发布博客 2018.04.12 ·
3309 阅读 ·
11 点赞 ·
2 评论 ·
31 收藏

深入理解拉格朗日乘子法和 KKT 条件

转载自:http://www.cnblogs.com/xinchen1111/p/8804858.html这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容。    首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值:minf(x)minf(x)    如果问题是 maxf(x)maxf(x) 也可以通过取反转化为求最小值 min−f(x)min−f(x),这个是一个习...
转载
发布博客 2018.04.12 ·
1373 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

GBDT(MART) 迭代决策树入门教程 | 简介

版权声明:转载请注明出处:苏冉旭的博客 http://blog.csdn.net/suranxu007/ https://blog.csdn.net/suranxu007/article/details/49910323GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树...
转载
发布博客 2018.04.12 ·
299 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

似然函数 极大似然估计 本质讲解

似然函数在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率: 例子:考虑投掷一枚硬币的实验。通常来说,已知投出的硬币正面朝上和反面朝上的概率各自是pH = 0.5,便可以知道投掷若干次后出现各种结果的可能性。比如说,投两次都是正面朝上的概率是0.25。用条件概率表示,就是:其中H表...
转载
发布博客 2018.04.11 ·
8035 阅读 ·
6 点赞 ·
0 评论 ·
24 收藏
加载更多