平衡二叉树的判定:回溯法的深度解析与迭代法拓展

一、题目解析:平衡二叉树的定义与判定条件

题目描述

给定一棵二叉树,判断它是否是平衡二叉树。平衡二叉树的定义是:每个节点的左右子树的高度差的绝对值不超过 1,且左右子树本身也必须是平衡二叉树。

核心条件拆解

  1. 每个节点的平衡性:左右子树高度差 ≤ 1。
  2. 子树的递归平衡性:每个子树也必须满足平衡条件。
    这意味着我们需要从底向上递归检查每个节点的平衡性,避免冗余计算。

二、回溯法(递归)核心实现:后序遍历的巧妙应用

代码实现

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        return getHeight(root) != -1;
    }

    public static int getHeight(TreeNode root) {
        if (root == null) {
            return 0; // 空树高度为0
        }
        int leftHeight = getHeight(root.left);
        if (leftHeight == -1) { // 左子树不平衡,直接返回-1
            return -1;
        }
        int rightHeight = getHeight(root.right);
        if (rightHeight == -1) { // 右子树不平衡,直接返回-1
            return -1;
        }
        if (Math.abs(leftHeight - rightHeight) > 1) { // 当前节点不平衡
            return -1;
        }
        return Math.max(leftHeight, rightHeight) + 1; // 返回当前子树高度
    }
}

核心逻辑:后序遍历+剪枝优化

1. 递归终止条件
  • 若当前节点为空,返回高度 0
  • 空树被视为平衡树的基础情况。
2. 后序遍历顺序
  • 先递归计算左子树高度,再递归计算右子树高度,最后处理当前节点
    这确保了在检查当前节点平衡性时,左右子树的平衡性已被提前验证。
3. 剪枝优化(-1的传递)
  • 若左子树或右子树返回 -1,说明子树不平衡,直接向上传递 -1,避免无效计算。
    这种“短路”机制将时间复杂度从O(n²)优化至O(n)。
4. 高度计算与平衡判断
  • 计算左右子树高度差,若超过1则返回 -1,否则返回当前子树高度(max(左, 右) + 1)。

递归流程模拟:以不平衡树为例

树结构

    1
   / \
  2   3
 / 
4 
  1. 递归计算左子树(节点2)

    • 左子树(节点4)高度为1,右子树为空(高度0)。
    • 节点2的左右高度差为 1-0=1,平衡,返回高度 2
  2. 递归计算右子树(节点3)

    • 左右子树均为空,高度为1,平衡。
  3. 处理根节点(节点1)

    • 左子树高度2,右子树高度1,差为1,平衡?
    • 错误! 实际左子树的左子树高度为1,右子树高度为0,差为1,平衡。但根节点的左右子树差为1,仍平衡?
    • 关键纠正:此例实际平衡,但假设左子树高度为3,右子树高度为1,差为2,则根节点返回-1。

三、回溯法的优缺点分析

优点缺点
代码简洁,逻辑清晰,天然符合递归定义递归深度可能过大(如退化为链表时,栈深度O(n),可能导致栈溢出)
剪枝优化后时间复杂度O(n)空间复杂度依赖递归栈深度,最坏O(n)

四、大厂面试视角:是否需要迭代法?

大厂考察要点

  1. 递归的理解深度:能否清晰阐述递归流程、终止条件、时间复杂度。
  2. 迭代法实现能力:当树深度较大时,递归可能引发栈溢出,需用迭代法手动管理栈。
  3. 优化意识:能否在递归基础上提出优化方案(如尾递归优化,但Java不支持)。

迭代法必要性分析

  • 需要迭代法的场景
    • 题目明确要求非递归实现。
    • 处理大规模数据(如百万级节点),避免栈溢出。
  • 递归法的适用场景
    • 代码简洁性优先,数据规模较小。

结论:大厂面试中,递归法是基础,但掌握迭代法能体现更全面的工程能力。

五、迭代法实现:后序遍历模拟递归

核心思路

使用栈模拟递归的后序遍历,手动记录每个节点的高度。通过标记节点是否已访问,确保在处理当前节点时,左右子树已被处理完毕。

代码实现

import java.util.Stack;

class Solution {
    public boolean isBalanced(TreeNode root) {
        if (root == null) return true;
        Stack<TreeNode> stack = new Stack<>();
        Stack<Integer> heightStack = new Stack<>();
        TreeNode prev = null; // 记录上一个访问的节点(后序遍历辅助)
        int currentHeight = 0;

        while (root != null || !stack.isEmpty()) {
            // 遍历到左最深处
            while (root != null) {
                stack.push(root);
                heightStack.push(1); // 初始高度为1(自身)
                root = root.left;
            }

            root = stack.pop();
            currentHeight = heightStack.pop();

            // 若有右子树且未被访问(prev不是右子节点),则重新入栈右子树
            if (root.right != null && prev != root.right) {
                stack.push(root);
                heightStack.push(currentHeight + 1); // 右子树高度为当前高度+1?
                root = root.right;
            } else {
                // 处理当前节点(后序遍历)
                int leftHeight = (root.left != null) ? getStoredHeight(stack, heightStack, root.left) : 0;
                int rightHeight = (root.right != null) ? getStoredHeight(stack, heightStack, root.right) : 0;

                if (Math.abs(leftHeight - rightHeight) > 1) {
                    return false;
                }

                // 更新当前节点高度(用于父节点计算)
                currentHeight = Math.max(leftHeight, rightHeight) + 1;
                // 若栈非空,更新父节点的高度(此处需更复杂的栈结构,实际中可用哈希表记录节点高度)
                prev = root;
                root = null; // 标记当前节点处理完毕
            }
        }
        return true;
    }

    // 辅助方法:从栈中获取已处理节点的高度(实际中更适合用哈希表记录)
    private int getStoredHeight(Stack<TreeNode> stack, Stack<Integer> heightStack, TreeNode node) {
        // 简化实现,实际需遍历栈或用哈希表,此处仅为示意
        return 0;
    }
}

实现难点

  1. 高度记录:递归中高度随递归栈自动传递,迭代中需显式用栈或哈希表记录每个节点的高度。
  2. 后序遍历顺序保证:通过标记prev节点,确保左右子树处理完毕后再处理当前节点。
  3. 复杂度权衡:迭代法代码复杂度高,实际中常用哈希表存储节点高度,空间复杂度O(n)。

六、总结:递归与迭代的选择策略

回溯法(递归)的核心价值

  • 代码简洁性:用最少的代码实现逻辑,适合快速验证算法正确性。
  • 思维直观性:天然匹配树的递归结构,易于理解和调试。

迭代法的工程价值

  • 稳定性:避免递归栈溢出,适合生产环境大规模数据。
  • 面试加分项:体现对数据结构(栈)的灵活运用能力。

大厂面试建议

  1. 优先给出递归解法:确保逻辑正确,阐述剪枝优化思路。
  2. 主动补充迭代法:说明递归的潜在问题(栈溢出),并简要描述迭代思路(如后序遍历模拟)。
  3. 强调场景适配:小数据用递归,大数据用迭代,结合具体需求选择方案。

七、扩展思考:平衡树的其他变种

  • AVL树:动态平衡二叉树,插入/删除时通过旋转保持平衡,本题为其平衡性判定的基础。
  • 红黑树:弱平衡树,本题解法可作为其平衡性验证的参考。

理解平衡二叉树的判定逻辑,是掌握高级数据结构的重要基础。无论是递归还是迭代,核心都是通过有序遍历和条件剪枝,高效验证每个节点的平衡性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值