bzoj1188 [HNOI2007]分裂游戏

链接:点击打开链接

题解:把一颗豆子看成一种局面,sg[i]中的i为豆子所处的位置

sg[i]=mex{sg[j]^sg[k]|i<j<=k}, 初始条件sg[n-1]=0

当位置i的豆子个数为偶数时,sg[i]相互抵消;所以当前局面的SG是p[i]为奇数位置的sg[i]的异或和

对于第一问,即考虑先手取一次后,后手取的局面的SG值,若为0,则先手必胜。后手的SG值为当前的SG^sg[i]^sg[j]^sg[k](其中i,j,k表示从第 i 个瓶子中拿走一颗豆子并在 j,k 中各放入一粒豆子),这是第二问已解决

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>

using namespace std;

const int N=21+5;

int n;
int sg[N],a[N];
int getsg(int p)
{
    if (p==n-1)return 0;
    if (sg[p]!=-1)return sg[p];
    int b[1000]={};
    for (int i=p+1;i<n;i++)for (int j=i;j<n;j++)b[getsg(i)^getsg(j)]=1;
    for (int i=0;i<500;i++)if (!b[i])return sg[p]=i;
}
void work()
{
    scanf("%d",&n);
    for (int i=0;i<n;i++)scanf("%d",&a[i]);
    memset(sg,-1,sizeof sg);
    int Ans=0;
    for (int i=0;i<n;i++)if (a[i]&1)Ans^=getsg(i);
    int tot=0;
    for (int i=0;i<n;i++)if (a[i]){
        for (int j=i+1;j<n;j++)for (int k=j;k<n;k++)if ((Ans^getsg(i)^getsg(j)^getsg(k))==0){
            tot++;
            if (tot==1){printf("%d %d %d\n",i,j,k);}
        }
    }
    if (tot)printf("%d\n",tot);
    else printf("-1 -1 -1\n0\n");
}

int main()
{
    int Case;scanf("%d",&Case);
    while (Case--)work();
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值