搜索与剪枝总结

本文介绍了DFS和BFS两种搜索算法在解决全排列、组合数、N皇后等问题中的应用,并提到了剪枝策略在优化搜索效率中的作用,包括可行性剪枝、排除冗余、优化搜索顺序和最优性剪枝。此外,还讨论了迭代加深在寻找最小值问题上的应用,举例说明了其在加成序列和木棒问题中的使用。
摘要由CSDN通过智能技术生成

一、基本dfs和bfs:

常见的dfs问题有:全排列问题、组合数问题、N皇后问题

组合数问题的写法:(也可以用set保存每一种组合的存在情况,但是需要事先排序,可能会超时)(还可以用start作为参数来写)


void dfs(int step){
    if(step==n){
        for(int i=1;i<=n;i++) cout << a[i];
        return;
    }
    for(int i=a[step-1]+1;i<=m;i++){//人为规定后面的数一定比前面的大,这样就能保证排列组合是唯一的
        if(!check[i]){
            a[step]=i;
            check[i]=true;
            dfs(step+1);
            check[i]=false;
        }
    }
}

int main()
{
    cin >> n >> m;
    dfs(1);
    return 0;
}

放两道题目:        AcWing 842. 排列数字 - AcWing (已做笔记)                                                                                 AcWing 843. n-皇后问题 - AcWing(已做笔记)

常见的bfs问题:最短路问题、最少操作次数问题

在往bfs队列里面加入元素时,要考虑是否会造成死循环,要注意加入元素时的特判,如:

该元素是否已经存在

 放两道题目:        AcWing 844. 走迷宫 - AcWing(已做笔记)

                               AcWing 845. 八数码 - AcWing(已做笔记)

 

二、剪枝:        

(1)可行性剪枝

(2)排除等效冗余(即相同的组合和搜索情况)

(3)优化搜索顺序(一般是从小到大或从大到小,与排序有关)

(4)最优性剪枝(如果当前答案已经大于等于我们当前的最优解,那么直接终止即可)

剪枝一般用于dfs,有很多剪枝题的dfs类型是bool型,bool型的返回要特别注意,当当前方案为false时,不能直接返回,而是要继续搜索其他方案

题目:        AcWing 166. 数独 - AcWing        AcWing 165. 小猫爬山 - AcWing

三、迭代加深:

迭代加深一般题目要求最小值,我么从小到大枚举,如果当前最小值满足,就直接break

题目:         AcWing 170. 加成序列 - AcWing        AcWing 167. 木棒 - AcWing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值