Mustan_
码龄2年
关注
提问 私信
  • 博客:5,297
    5,297
    总访问量
  • 33
    原创
  • 1,619,465
    排名
  • 2
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2022-08-04
博客简介:

Mustan_的博客

查看详细资料
个人成就
  • 获得14次点赞
  • 内容获得0次评论
  • 获得12次收藏
创作历程
  • 33篇
    2023年
成就勋章
TA的专栏
  • 单源最短路
    5篇
  • 蓝桥杯复习
    1篇
  • 动态规划刷题记录
    2篇
  • 背包
    3篇
  • 搜索
    2篇
  • 拓扑排序
    2篇
  • 基础算法
    5篇
  • 离散化
    1篇
  • 多源汇最短路
    2篇
  • 最小生成树
    1篇
  • 并查集
    1篇
  • 树状数组
    1篇
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【acwing4408李白打酒】

思路:这是一道状态机题目,要把三种状态都用数组表示出来,所以要三维。
原创
发布博客 2023.02.25 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【洛谷P1359租用游艇】

思路:根据题意,只有小的点能转移到大的点,所以转移方程就是对于每一个点,把小于它的点都遍历一遍,然后取min。
原创
发布博客 2023.02.25 ·
118 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

蓝桥杯复习

(模拟+取模+环形数组)(浮点二分+题意思维)(前缀和+取模+数学)
原创
发布博客 2023.02.08 ·
295 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

背包问题加深

二维:f[0][j] 初始化为1,其余为0,并且要保证背包剩余体积不为负数。二维:f[0][0] 初始化为1,其余为0,并且要保证背包剩余体积不为负数。一维:f[0] 初始化为1,其余为0,并且要保证背包剩余体积不为负数。二维:f[0][0] 初始化为1,其余为0,背包剩余体积可以为负数。一维:f[0] 初始化为1,其余为0,背包剩余体积可以为负数。一维最小值:f[0] 初始化为0,其余为INF。二维最小值:f[0][0] 初始化为0,其余为INF。二维最小值:f[0][0] 初始化为0,其余为INF。
原创
发布博客 2023.02.07 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

搜索算法加深

(2)对于前缀数组的更新,是覆盖式的,所以对于最短路,每次更新时如果该点已经被搜过(即前缀数组有值),就不要再更新了,因为那不是最短路、(1)题目有时要求输出方案和路径的序列,所以就要用一个前缀数组把序列存起来。在bfs时,对于每一个点,每次都会扩展这个点的。方案,所以不需要再重新来一遍,所以也需要判重数组。,需要恢复现场,所以只能用dfs;(3)在dfs时,在回溯之前,每次搜的都是。,就不用恢复现场,用dfs和bfs都可以。(4)对于bool类型的dfs,,而是继续搜索其他方案。(1)bfs更新时,
原创
发布博客 2023.02.06 ·
68 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

拓扑排序加深

(3)拓扑排序的特点有一个是 “入度为0” 的点,在这里可能会涉及到一些别的操作,主要看题目的情景。(2)拓扑排序有时能用floyd和传递闭包代替,但是。,而传递闭包只能判断连通性和对应关系是否存在。(1)拓扑排序必须是有向图,而且它的。(4)拓扑排序和其他一些树和图一样,
原创
发布博客 2023.02.05 ·
72 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

离散化总结

对于题目的输入数据,如果数据很稀疏(数据量较小,但值域很大),就要进行离散化,否则就可能超时,或者数组爆掉。
原创
发布博客 2023.02.04 ·
75 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Floyd加深

(1)对于 i,j 两点,如果能形成通路,那么就在两点间连一条边,通常在。(也可以说成 d[i][j] 和 d[j][i] 两个都。,然后还要求两点之间的最大值,这时候不是求最长路,而是求。(3)对于传递闭包的关系判断,如果。(2)floyd判断连通块通常是在。有通路),那么就说明有矛盾;(1)floyd通过判断。,那么就说明关系不确定。,那么关系就是唯一确。(4)传递闭包必须是。
原创
发布博客 2023.02.04 ·
88 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

单源最短路加深

求最大值边权必须小于0;求最小值边权必须大于0;求最大乘积边权必须小于1;求最小乘积边权必须大于1。(4)单源最短路求的是起点到其他任意一点的最短路,所以单源最短路也可以求。(5)单源最短路也可以做的很像最小生成树,求。无论是正的负的,还是加的乘的,(6)单源最短路可以是。(最基础的单源最短路)(起点与其他所有点)(起点与其他所有点)
原创
发布博客 2023.02.04 ·
76 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

最小生成树

(1)对于一张图里面的n个点,最小生成树只能有n-1条边,所以最小生成树可以用于去环(2)最小生成树必须是无向图才可以计算(3)除了最小生成树,还可以求最小生成森林。
原创
发布博客 2023.02.04 ·
99 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

归并及其应用

(1)归并的本质是分治,先分到最小,再按照某一规则合并(2)归并的分是采用递归的方式。
原创
发布博客 2023.01.31 ·
81 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

图论最短路杂项

Dijkstra只能用于求解正边权的最短路,其时间复杂度只与点数有关;堆优化的Dijkstra,其时间复杂度既与点数有关,也与边数有关;,用邻接表存图的话不用做特殊处理,但是用邻接矩阵存图的话,就要取最小值。(4)如果有负权回路,并不说明在求解最短路的过程中一定会死循环,只是说。bellman-ford用于求解有负权边的最短路问题,并且可以规定。spfa也是用于求解有负权边的最短路问题,其实质上是。问题,它既可以处理正权边,也可以处理负权边,但是。(3)bellman-ford算法:复杂度。
原创
发布博客 2023.01.29 ·
97 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Floyd算法

(1)floyd算法是基于动态规划思想的一种最短路算法(2)floyd用于处理多源汇最短路问题,也可以处理单源最短路,但是因为其时间复杂度较高,所以单源最短路一般还是选用其他算法(3)floyd不能处理有负权回路的最短路问题。
原创
发布博客 2023.01.29 ·
211 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

spfa算法

(1)spfa实质上是用队列优化的bellman-ford算法,在bellman-ford中,我们每一轮的松弛操作都需要遍历所有的边,但是有些边是不需要遍历的,所以我们把需要更新的边的起点放入队列中,更新队列里面存在的就行了(2)虽然bellman-ford也可以判断负环,但是一般用spfa。
原创
发布博客 2023.01.29 ·
551 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Bellman-ford算法

(1)bellman-ford算法用于求解有负权边的最短路问题(2)bellman-ford可以用于判断有无负权回路(3)bellman-ford可以用于求解最多经过k条边的最短路问题。
原创
发布博客 2023.01.28 ·
254 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

拓扑排序基础

所以可以通过这点来判断一张图有没有环(即有没有拓扑序)(2)若队列不为空,每次取出队首数据,存放到一个数组中。(1)每张图的拓扑序列可能不唯一(每个时刻。(2)既可以用邻接表,也可以用邻接矩阵。,来判断是否有拓扑序。
原创
发布博客 2023.01.27 ·
83 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

迪杰斯特拉(Dijkstra)算法

(1)Dijkstra算法用于求解最短路问题,且所有的边权都必须为正(2)Dijkstra算法有朴素版本和堆优化版本两种;一般来说,如果是稠密图,就用朴素的,如果是稀疏图,就用堆优化的(3)稠密图或者点数比较少时一般用邻接矩阵,稀疏图或者点数比较多时一般用邻接表(邻接矩阵在有重边时要取最小值,邻接表则不用考虑重边)
原创
发布博客 2023.01.27 ·
722 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

背包专题题目

(二维费用+满足最优解的最小值)(完全背包求组合是否存在)(01背包求组合数)(完全背包求组合数)(完全背包求组合数)
原创
发布博客 2023.01.23 ·
81 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

STL常用操作

to_string() 函数可以把数字转换为字符串。字符串的查找如果查找不到,就会返回。
原创
发布博客 2023.01.21 ·
191 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

动态规划基础

01背包只有选和不选两种情况,并且每种物品只有1个。数字三角形如果数据中有负数,则需要。,如果直接取max的话会取到负数。完全背包的每种物品都有无限件。详细的说明在题目代码注释中。
原创
发布博客 2023.01.18 ·
94 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多