YOLOv5s配置环境时遇到的问题


想补充一下我遇到的问题,以便其他小伙伴解决问题:
1.在detect之前,应该要先pip install -r requirements.txt,当然这也不是什么问题,但像我这样的萌新确实有可能在遇到问题后,一个一个去pip
2.attributeerror: ‘FreeTypeFont‘ object has no attribute ‘getsize‘,这个报错是因为Pillow版本过高,执行pip install Pillow==9.5即可
在用pip命令下载pytorch时,直接给我下载了个Pillow=10.0,估计之后的小伙伴也会遇到这个问题
3.预训练权重下载方法:进入gitcode后,点击页面右侧的“全部发行版”,然后找到yolov5s.pt,之所以要下载它,是因为在代码中,train.py文件中444行weights参数,默认就是yolov5s.pt,如果下载了其他的预训练权重,记得代码中要修改,还有就是权重放在根目录下
4.还有个小tip:如果下载很慢,可以使用镜像,使用方法:pip xxx -i https://pypi.tuna.tsinghua.edu.cn/simple,-i只能用在pip命令后,不能用在conda命令后,我这里是用pip更快
5.运行train.py后,要下载两个东西,Arial.ttf和coco128,这俩是直接从yolov5官网下载,可能会下载不了,这时候可能需要使用一些科学方法来下载,Arial.ttf的保存路径是C:\Users\Administrator\AppData\Roaming\Ultralytics
coco128的保存路径是../datasets/coco128(相对于train.py的路径)
 

### YOLOv5s 环境配置教程 #### 一、安装依赖项 为了成功运行YOLOv5,需确保环境中已安装必要的Python包和其他依赖项。以下是具体操作方法: 1. **克隆YOLOv5仓库** 首先从GitHub上获取YOLOv5项目的源码文件: ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5 ``` 2. **创建虚拟环境并激活** 推荐使用`virtualenv`或`conda`来管理独立的Python环境,以避免与其他项目冲突。 使用`virtualenv`的方式如下: ```bash python3 -m venv env_yolov5 source env_yolov5/bin/activate ``` 如果使用的是Anaconda,则可以执行以下命令: ```bash conda create -n yolov5_env python=3.8 conda activate yolov5_env ``` 3. **安装必要依赖** 运行以下命令以自动安装所需的Python库: ```bash pip install -r requirements.txt ``` 此外,还需要特别注意OpenCV的版本兼容性问题[^3]。如果遇到任何与OpenCV相关的错误,可以通过重新编译或者卸载旧版解决。 4. **验证CUDA和cuDNN支持** 若计划在GPU加速环境下部署模型,则需要确认系统已经正确设置了NVIDIA CUDA Toolkit以及对应的cuDNN SDK版本。通常推荐使用的组合为CUDA 11.x 和 cuDNN 8.x系列[^1]。 #### 二、测试推理功能 完成上述准备工作之后,可通过内置脚本进行简单的图像目标检测实验,以此检验当前设置是否正常工作。 ```python python detect.py --source data/images --weights yolov5s.pt --conf 0.25 ``` 这条指令会加载预训练权重文件(`yolov5s.pt`)并对指定路径下的图片实施预测分析过程[^2]。 --- ### 注意事项 - 在实际应用过程中,请务必遵守相关法律法规及数据隐私保护政策。 - 对于嵌入式设备如Jetson Nano/Xavier NX等平台来说,由于其资源有限,在构建开发工具链可能需要额外调整某些参数或组件选项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值