Spark MLlib基本数据类型

本文介绍了Spark MLlib中的两种基本数据类型——本地向量Local Vector和标注点LabeledPoint,详细阐述了它们在机器学习中的作用和使用场景。
摘要由CSDN通过智能技术生成

1.本地向量 Local Vector

import org.apache.spark.mllib.linalg.{Vector,Vectors}
/*
* 本地向量 Local Vector
* */
object scalaTest {
  def main(args: Array[String]): Unit = {
    // 创建一个稠密本地向量
    val dv: Vector = Vectors.dense(3.0, 0.0, 6.0,0.0,9.0)
    // 创建一个稀疏本地向量
    // 方法第二个参数数组指定了非零元素的索引,而第三个参数数组则给定了非零元素值
    val sv1: Vector = Vectors.sparse(5, Array(0, 2, 4), Array(3.0, 6.0, 9.0))

    // 另一种创建稀疏本地向量的方法
    // 方法的第二个参数是一个序列,其中每个元素都是一个非零值的元组:(index,elem)
    val sv2: Vector = Vectors.sparse(5, Seq((0, 3.0), (2, 6.0),(4, 9.0)))
    println(dv)
    println(sv1.toDense)
    println(sv2)
  }
}

2.标注点 LabeledPoint

import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.linalg.Vect
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值