数据分布的偏度(skewness)和峰度(kurtosis)

偏度(skewness)

是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数值特征:定义为:样本的三阶标准化矩。
S k e w ( X ) = E [ ( X − μ σ ) ] = k 3 σ 3 = k 3 k 2 3 / 2 Skew(X)=E[(\frac{X-\mu}{\sigma})]=\frac{k_3}{\sigma_3}=\frac{k_3}{k_2^{3/2}} Skew(X)=E[(σXμ)]=σ3k3=k23/2k3

偏度定义中包括:正态分布(偏度=0)、右偏(尾巴右偏)分布(也叫正偏分布,偏度>0),左偏(尾巴左偏)分布(也叫负偏分布,其偏度<0)。

峰度(peakedness、kurtosis)

又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数,直观看来,峰度反映了峰部的尖度,随机变量的峰度计算方法:随机变量的四阶中心距与方差平方的比值。

K u r t ( X ) = E [ ( X − μ σ ) 4 ] = E [ ( X − μ ) 4 ] E [ ( X − μ ) 2 ] ) 2 Kurt(X)=E[(\frac{X-\mu}{\sigma})^4]=\frac{E[(X-\mu)^4]}{E[(X-\mu)^2])^2} Kurt(X)=E[(σXμ)4]=E[(Xμ)2])2E[(Xμ)4]

峰度包括正态分布(峰度值=3),厚尾(峰度值>3),瘦尾(峰度值<3)
在这里插入图片描述

具体计算方法:
DataFrame.skew()
DtaFrame.kurt()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@u@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值