Codeforces 782B 二分搜索

题意:

x正半轴上的n个人,知道每个人的初始位置(x)和最大速度(v)。

求所有人相聚到一起的最短时间 <==> 找到一个使所有人全速移动且同时汇聚的点 (想到这个转化才想到用二分,证明嘛我还没想好,求助一波回头更新)


思路:

第一次做完全没有思路......

违背信仰看了网上的代码,是二分搜索找到上文所说的点(其实只要精度达到就可以),用lt,rt记录mid两边的点到达中间点需要的时间,通过更新二分区间(平衡两边的时间),找到那个 左右两边花费最大时间相同的 的点。

值得注意的地方:

1.精度转移,这个是大学物理实验里面学的吧,迷,看的网上的代码

2.更新二分区间之后的效果可能不如上一次好,保存的答案是要最小值(哦!二分是一个取极限的过程,精度达到了就应该停止,二分是二分不完的,除非数据很凑巧很整)(因此,有可能在某次二分之后 很多次更新区间取得的效果都不如这一次好,所以要取最优值)。

3.这道题可能出现所有人都在一个点的情况(防止输出ans==INF)

//
//  main.cpp
//  170512-782B
//
//  Created by Xie on 12/05/2017.
//  Copyright © 2017 meiyoumingzi. All rights reserved.
//

//用二分找到集合的点(也就是找到所有人用时最少都能到达的点,用两侧的时间判断如何更新二分的区间)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
const double error=1e-9;
struct friends{
    int a,v;
}f[60005];

bool cmp(friends a,friends b){
    return a.a<b.a;
}

int main() {
    int n;
    while(cin>>n){
        for(int i=0;i<n;i++)
            scanf("%d",&f[i].a);
        for(int i=0;i<n;i++)
            scanf("%d",&f[i].v);
        sort(f,f+n,cmp);
        double l=f[0].a,r=f[n-1].a,mid=(l+r)/2,ans=INF;
        do{
            double lt=0,rt=0;
            for(int i=0;i<n;i++){
                if(f[i].a<mid){
                    lt=max(lt,1.0*(mid-f[i].a)/f[i].v);
                }
                else if(f[i].a>mid){
                    rt=max(rt,1.0*(f[i].a-mid)/f[i].v);
                }
            }
            double tmp=max(rt,lt);
            ans=min(ans,tmp);   //更新区间后,二分的结果不一定比上一次好
            
            tmp=lt-rt;
            tmp=tmp>0? tmp:-tmp;
            if(tmp<=error){   //误差精度的传递???不懂
                break;
            }
            else if(lt>rt){
                r=mid;
                mid=(l+r)/2;
            }
            else{
                l=mid;
                mid=(l+r)/2;
            }
        }while(r-l>=error);
        printf("%.12lf\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值