题意:
x正半轴上的n个人,知道每个人的初始位置(x)和最大速度(v)。
求所有人相聚到一起的最短时间 <==> 找到一个使所有人全速移动且同时汇聚的点 (想到这个转化才想到用二分,证明嘛我还没想好,求助一波回头更新)
思路:
第一次做完全没有思路......
违背信仰看了网上的代码,是二分搜索找到上文所说的点(其实只要精度达到就可以),用lt,rt记录mid两边的点到达中间点需要的时间,通过更新二分区间(平衡两边的时间),找到那个 左右两边花费最大时间相同的 的点。
值得注意的地方:
1.精度转移,这个是大学物理实验里面学的吧,迷,看的网上的代码
2.更新二分区间之后的效果可能不如上一次好,保存的答案是要最小值(哦!二分是一个取极限的过程,精度达到了就应该停止,二分是二分不完的,除非数据很凑巧很整)(因此,有可能在某次二分之后 很多次更新区间取得的效果都不如这一次好,所以要取最优值)。
3.这道题可能出现所有人都在一个点的情况(防止输出ans==INF)
//
// main.cpp
// 170512-782B
//
// Created by Xie on 12/05/2017.
// Copyright © 2017 meiyoumingzi. All rights reserved.
//
//用二分找到集合的点(也就是找到所有人用时最少都能到达的点,用两侧的时间判断如何更新二分的区间)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
const double error=1e-9;
struct friends{
int a,v;
}f[60005];
bool cmp(friends a,friends b){
return a.a<b.a;
}
int main() {
int n;
while(cin>>n){
for(int i=0;i<n;i++)
scanf("%d",&f[i].a);
for(int i=0;i<n;i++)
scanf("%d",&f[i].v);
sort(f,f+n,cmp);
double l=f[0].a,r=f[n-1].a,mid=(l+r)/2,ans=INF;
do{
double lt=0,rt=0;
for(int i=0;i<n;i++){
if(f[i].a<mid){
lt=max(lt,1.0*(mid-f[i].a)/f[i].v);
}
else if(f[i].a>mid){
rt=max(rt,1.0*(f[i].a-mid)/f[i].v);
}
}
double tmp=max(rt,lt);
ans=min(ans,tmp); //更新区间后,二分的结果不一定比上一次好
tmp=lt-rt;
tmp=tmp>0? tmp:-tmp;
if(tmp<=error){ //误差精度的传递???不懂
break;
}
else if(lt>rt){
r=mid;
mid=(l+r)/2;
}
else{
l=mid;
mid=(l+r)/2;
}
}while(r-l>=error);
printf("%.12lf\n",ans);
}
return 0;
}