poj 1739 Tony's Tour(插头dp)

题意:

给出地图,起点是(N,1),终点是(N,M),有障碍物,求有多少种方案能从起点到终点。

题解:

非环形的插头dp,特判一些起点和终点的dp,还要注意一点,从上往下dp的时候因为起点是左下角,所以不存在不建立新插头的方案!不然未走的空格子就被计算成了路径,反而增加累赘的方案数。


#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<map>
using namespace std;
typedef __int64 lld;
#define oo 0x3f3f3f3f
#define OO 0x3f3f3f3f3f3f3f3f
#define HASH 10007
#define STATE 1000010
#define MAXD 15
int N,M,ex,ey;
int code[MAXD];
int maze[MAXD][MAXD];
int ch[MAXD];
int temp_map[MAXD][MAXD];

struct HASHMAP
{
    int head[HASH],next[STATE],sizes;
    lld dp[STATE];
    lld state[STATE];
    void init()
    {
        sizes=0;
        memset(head,-1,sizeof head);
    }
    void push(lld st,lld ans)
    {
        int h=st%HASH;
        for(int i=head[h];i!=-1;i=next[i])
        {
            if(st==state[i])
            {
                dp[i]+=ans;
                return ;
            }
        }
        dp[sizes]=ans;
        state[sizes]=st;
        next[sizes]=head[h];
        head[h]=sizes++;
    }
}hm[2];

void decode(int code[],int m,lld st)
{
    for(int i=m;i>=0;i--)
    {
        code[i]=st&7;
        st>>=3;
    }
}

lld encode(int code[],int m)///最小表示法
{
    lld st=0;
    int cnt=0;
    memset(ch,-1,sizeof ch);
    ch[0]=0;
    for(int i=0;i<=m;i++)
    {
        if(ch[code[i]]==-1) ch[code[i]]=++cnt;
        code[i]=ch[code[i]];
        st<<=3;
        st|=code[i];
    }
    return st;
}

void shift(int code[],int m)///换行 移位
{
    for(int i=m;i>0;i--)
        code[i]=code[i-1];
    code[0]=0;
}

void dpblank(int i,int j,int cur)
{
    int left,up;
    for(int k=0;k<hm[cur].sizes;k++)
    {
        decode(code,M,hm[cur].state[k]);
        left=code[j-1];
        up=code[j];

        ///开头
        if((i==N&&j==1)||(i==N&&j==M))
        {
            if((up&&!left)||(!up&&left))
            {
                code[j-1]=code[j]=0;
                if(j==M)shift(code,M);
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
            }
            else if(!up&&!left)
            {
                if(maze[i][j+1])//往右走
                {
                    code[j-1]=0;
                    code[j]=13;
                    hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
                }
                if(maze[i+1][j])
                {
                    code[j-1]=13;
                    code[j]=0;
                    if(j==M)shift(code,M);
                    hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
                }
            }
            continue;
        }

        if(left&&up)///11 -> 00       有上插头和左插头,这种情况下相当于合并两个连通分量
        {
            if(left!=up)///不存在环才进行dp
            {
                code[j-1]=code[j]=0;
                for(int t=0;t<=M;t++)
                    if(code[t]==up)
                        code[t]=left;
                if(j==M)shift(code,M);
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
            }
        }
        else if(left||up)///01 || 10  上插头和左插头恰好有一个,这种情况相当于延续原来的连通分量
        {
            int temp;
            if(left) temp=left;
            else temp=up;
            if(maze[i][j+1])
            {
                code[j-1]=0;
                code[j]=temp;
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
            }
            if(maze[i+1][j])
            {
                code[j-1]=temp;
                code[j]=0;
                if(j==M)shift(code,M);///切记不可忘记,换行要shift
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
            }
        }
        else///没有上插头和左插头,有下插头和右插头,相当于构成一个新的连通块
        {
            if(maze[i][j+1]&&maze[i+1][j])
            {
                code[j]=code[j-1]=13;
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
            }
            ///起点是左下角,不存在不建立新两通快的情况,因为如果不建立新的联通快相当于把上面“未走”的空格给计算成了路径
        }
    }
}

void dpblock(int i,int j,int cur)
{
    for(int k=0;k<hm[cur].sizes;k++)
    {
        decode(code,M,hm[cur].state[k]);
        code[j-1]=code[j]=0;///因为有障碍物所以 左插头j-1 和 上插头j 都消失了(就是不联通了)
        if(j==M)shift(code,M);
        hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
    }
}

void init()
{
    memset(maze,0,sizeof maze);
    char str[MAXD][MAXD];
    for(int i=1;i<=N;i++)
    {
        getchar();
        for(int j=1;j<=M;j++)
        {
            scanf("%c",&str[i][j]);
            if(str[i][j]=='.')
                maze[i][j]=1;
        }
    }
}

void solve()
{
    int cur=0;
    lld ans=0;
    hm[cur].init();
    hm[cur].push(0,1);
    for(int i=1;i<=N;i++)
        for(int j=1;j<=M;j++)
        {
            hm[cur^1].init();
            if(maze[i][j])
                dpblank(i,j,cur);
            else
                dpblock(i,j,cur);
            cur^=1;
        }
    for(int i=0;i<hm[cur].sizes;i++)
            ans+=hm[cur].dp[i];
    printf("%I64d\n",ans);
}

int main()
{
    while(scanf("%d %d",&N,&M)!=EOF)
    {
        if(N==0&&M==0)break;
        init();
        solve();
    }
    return 0;
}
/**
2 2
..
..
2 3
#..
...
3 4
....
....
....
*/




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值