zoj 3213 Beautiful Meadow(插头dp)

题意:

给图地图,每个格子有分数,0分数的格子不能走。求最大分数的一条路径

题解:

这题异常坑爹,在换行操作、有过移位的操作中可能会误将最高位的标记为覆盖掉,因此注释的地方是改写了的,注意区别。


/**
积累一个小技巧,队友路径的插头dp大概分为两种大类
一:只给定起点或终点、起点和终点都给定
    对于这类要在总的装填转移之前加特判终点和起点的代码
二:没给起点终点
    这类特要在代码中加入起点和终点作为决策(加一个变量标记插头个数,并且加入标志位)
    起点决策:一般在没有插头的决策中加入(起点是起始点肯定要没插头开始)
    终点决策:一般在只有一个插头的决策中加入(因为是路径不是换所以终点肯定要只有一个插头,环另当别论)
注意一点,第一类问题结果ans是加上最后一行,因为终点已经确定,但是第二类终点未确定所以去去最后一行的最值(相当于枚举终点)
*/
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<map>
using namespace std;
typedef long long lld;
#define oo 0x3f3f3f3f
#define OO 0x3f3f3f3f3f3f3f3f
#define HASH 10007
#define STATE 1000010
#define MAXD 15
int N,M,ex,ey;
int code[MAXD];
int maze[MAXD][MAXD];
int ch[MAXD];
int num;///独立插头的个数

struct HASHMAP
{
    int head[HASH],next[STATE],sizes;
    int dp[STATE];
    lld state[STATE];
    void init()
    {
        sizes=0;
        memset(head,-1,sizeof head);
    }
    void push(lld st,int ans)
    {
        int h=st%HASH;
        for(int i=head[h];i!=-1;i=next[i])
        {
            if(st==state[i])
            {
                if(dp[i]<ans) dp[i]=ans;
                return ;
            }
        }
        dp[sizes]=ans;
        state[sizes]=st;
        next[sizes]=head[h];
        head[h]=sizes++;
    }
}hm[2];

void decode(int code[],int m,lld st)
{
    num=st&7;
    st>>=3;
    for(int i=m;i>=0;i--)
    {
        code[i]=st&7;
        st>>=3;
    }
}

lld encode(int code[],int m)///最小表示法
{
    lld st=0;
    int cnt=0;
    memset(ch,-1,sizeof ch);
    ch[0]=0;
    for(int i=0;i<=m;i++)
    {
        if(ch[code[i]]==-1) ch[code[i]]=++cnt;
        code[i]=ch[code[i]];
        st<<=3;
        st|=code[i];
    }
    st<<=3;
    st|=num;
    return st;
}

void shift(int code[],int m)///换行 移位
{
    for(int i=m;i>0;i--)
        code[i]=code[i-1];
    code[0]=0;
}

void dpblank(int i,int j,int cur)
{
    int left,up;
    for(int k=0;k<hm[cur].sizes;k++)
    {
        decode(code,M,hm[cur].state[k]);
        left=code[j-1];
        up=code[j];

        if(left&&up)///11 -> 00       有上插头和左插头,这种情况下相当于合并两个连通分量
        {
            if(left!=up)///不存在环才进行dp (合并)
            {
                code[j-1]=code[j]=0;
                for(int t=0;t<=M;t++)
                    if(code[t]==up)
                        code[t]=left;
                if(j==M)shift(code,M);
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]+maze[i][j]);
            }
        }
        else if(left||up)///01 || 10  上插头和左插头恰好有一个,这种情况相当于延续原来的连通分量
        {
            int temp;
            if(left) temp=left;
            else temp=up;
            if(maze[i][j+1])
            {
                code[j-1]=0;
                code[j]=temp;
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]+maze[i][j]);
            }
            if(maze[i+1][j])
            {
                code[j-1]=temp;
                code[j]=0;
                //if(j==M)shift(code,M);///切记不可忘记,换行要shift
                //hm[cur^1].push(encode(code,M),hm[cur].dp[k]+maze[i][j]);
                hm[cur^1].push(encode(code,j==M?M-1:M),hm[cur].dp[k]+maze[i][j]);
            }
            ///这个决策把这个点作为这个状态的终点
            if(num<2)
            {
                num++;
                code[j-1]=code[j]=0;
                //if(j==M)shift(code,M);
                //hm[cur^1].push(encode(code,M),hm[cur].dp[k]+maze[i][j]);
                hm[cur^1].push(encode(code,j==M?M-1:M),hm[cur].dp[k]+maze[i][j]);
            }
        }
        else///没有上插头和左插头,有下插头和右插头,相当于构成一个新的连通块
        {
            ///这里有三个决策,第一个很正场必须有,建立性的插头,第二决策不建立插头(不走这条路呗),决策三看代码
            
            code[j]=code[j-1]=0;
            hm[cur^1].push(encode(code,j==M?M-1:M),hm[cur].dp[k]);
            
            ///不是起点直接增加插头
            if(maze[i][j+1]&&maze[i+1][j])
            {
                code[j]=code[j-1]=13;
                hm[cur^1].push(encode(code,M),hm[cur].dp[k]+maze[i][j]);
            }
            
            ///因为没有插头,所以可以从这里作为这个状态起点,于是加入一个插头
            if(num<2)
            {
                num++;
                if(maze[i][j+1])
                {
                    code[j-1]=0;
                    code[j]=13;
                    hm[cur^1].push(encode(code,M),hm[cur].dp[k]+maze[i][j]);
                }
                if(maze[i+1][j])
                {
                    code[j]=0;
                    code[j-1]=13;
                    //hm[cur^1].push(encode(code,j==M?M-1:M),hm[cur].dp[k]+maze[i][j]);
                    if(j==M)shift(code,M);
                    hm[cur^1].push(encode(code,M),hm[cur].dp[k]+maze[i][j]);
                }
            }
        }
    }
}

void dpblock(int i,int j,int cur)
{
    for(int k=0;k<hm[cur].sizes;k++)
    {
        decode(code,M,hm[cur].state[k]);
        code[j-1]=code[j]=0;
        if(j==M)shift(code,M);
        hm[cur^1].push(encode(code,M),hm[cur].dp[k]);
    }
}

void init()
{
    memset(maze,0,sizeof maze);
    scanf("%d %d",&N,&M);
    for(int i=1;i<=N;i++)
        for(int j=1;j<=M;j++)
            scanf("%d",&maze[i][j]);
}

void solve()
{
    int cur=0;
    int ans=0;
    hm[cur].init();
    hm[cur].push(0,0);
    for(int i=1;i<=N;i++)
        for(int j=1;j<=M;j++)
        {
            hm[cur^1].init();
            if(maze[i][j])dpblank(i,j,cur);
            else dpblock(i,j,cur);
            if(maze[i][j]>ans)
                ans=maze[i][j];
            cur^=1;
        }
    for(int i=0;i<hm[cur].sizes;i++)
        if(hm[cur].dp[i]>ans)
            ans=hm[cur].dp[i];///因为起点终点未确定,相遇枚举终点来确定最大值
    printf("%d\n",ans);
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        init();
        solve();
    }
    return 0;
}
/**

*/







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值