题目很简单,离散化下,然后dp方程E[i][j] = E[i][j-2]*(1-p) + E[i][j+1]*p + 1;(假设i>=j)
因为存在E[i][j-2]未能计算出来的问题,因此dp无法解决,考虑用高斯消元。
将方程变形 E[i][j] - (1-p)*E[i][j-2] - p*E[i][j+1] = 1;
然后每个状态都有对应的方程,每个方程一个表达式,用高斯消元解这些表达式。结果就是x[0]的解!
#include<iostream>
#include<math.h>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define B(x) (1<<(x))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
void cmax(int& a, int b){ if (b>a)a = b; }
void cmin(int& a, int b){ if (b<a)a = b; }
void cmax(ll& a, ll b){ if (b>a)a = b; }
void cmin(ll& a, ll b){ if (b<a)a = b; }
void add(int& a, int b, int mod){ a = (a + b) % mod; }
void add(ll& a, ll b, ll mod){ a = (a + b) % mod; }
const int oo = 0x3f3f3f3f;
const ll OO = 0x3f3f3f3f3f3f3f3f;
const ll MOD = 1000000007;
const int maxn = 300;
const double eps = 1e-6;
double a[maxn][maxn];
int id[maxn][maxn], cnt;
double p;
void Init(){
for (int i = 0; i < maxn; i++)
for (int j = 0; j < maxn; j++)
a[i][j] = 0.0;
}
void build(int n){
cnt = 0;
memset(id, -1, sizeof id);
for (int i = 0; i < n; i++){
for (int j = 0; j <= i; j++)
id[i][j] = cnt++;
}
Init();
int nx, ny, u, v;
for (int i = 0; i < n; i++){
for (int j = 0; j <= i; j++){
u = id[i][j];
a[u][u] = 1.0;
a[u][cnt] = 1.0;
nx = max(i, j + 1), ny = min(i, j + 1);
v = id[nx][ny];
a[u][v] -= p;
nx = i, ny = max(0, j - 2);
v = id[nx][ny];
a[u][v] -= (1 - p);
}
}
}
double Gauss(int n, int m){
int r, c;
for (r = 0, c = 0; r < n && c < m; r++, c++){
int k = r;
for (; k < n; k++)
if (fabs(a[k][c]) > eps)
break;
if (fabs(a[k][c]) < eps) continue;
if (k != r){
for (int j = 0; j <= m; j++)
swap(a[k][j], a[r][j]);
}
for (int i = 0; i < n; i++){
if (i == r) continue;
if (fabs(a[i][c]) < eps) continue;
double t = a[i][c] / a[r][c];
for (int j = c; j <= m; j++)
a[i][j] -= a[r][j] * t;
}
}
return a[0][m] / a[0][0];
}
int main(){
//freopen("E:\\read.txt","r",stdin);
while (scanf("%lf", &p) != EOF){
build(20);
printf("%.6lf\n", Gauss(cnt, cnt));
}
return 0;
}