练习python中读取文件比较常用的库pandas
pandas是python用来统计、分析数据的基石,尤其是针对表格数据,掌握好pandas库对数据分析、建模有很大的促进作用,特别需要熟练掌握Series和DateFrome工具
任务:重点测试PANDAS的用法,文件中num字段是中国文化对他们的影响力,开头是to的字段则是这些国家的某些属性,编程实现下列功能:
1输出num比较大的国家名(大于平均值);
2分别按num的大小和to_num的大小输出国家名;
由于保密等原因,文件无法提供,会提供部分截图,读者可以找寻类似的文件进行练习
导入pands库和csv库
import csv
from pandas import Series,DataFrame
import pandas as pd`
读取csv文件,以及进行任务1
content=pd.read_csv('pandas测试.csv',index_col=False)
data={'num':content['num'].tolist(),'to_num':content['to_num'].tolist(),'co_num':content['co_num'].tolist(),'to_rup':content['to_rup'].tolist()}
#创建DateFrame
data1=DataFrame(data,columns=['num','to_num','co_num','to_rup'],index=[content['to']])
t=0
sums=0
while t<len(content['num'].tolist()):
sums=sums+content['num'].tolist()[t]
t=t+1
print(sums)
average=sums/len(content['num'].tolist())
print(average)
#输出影响力大于平均值的国家
t=0
while t<len(content['num'].tolist()):
if(content['num'].tolist()[t]>average):
print(content['to'].tolist()[t]+" ")
t=t+1
完成任务2,进行排序,新版的集成开发环境对pandas库中对DataFrame指定列进行排序的函数进行了修改,sort_index在新版的开发环境中已经不能使用了,改成了sort_values函数
a1=data1.sort_values(ascending=False,by='num')
print(a1.index)
a2=data1.sort_values(ascending=False,by='to_num')
print(a2.index)
sort_values中的ascending=False指用降序排列,默认为升序排列,也可以改成True
关于pandas库中对于DataFrame操作的其它函数大家可以去官网查看相关文档,也给大家推荐一篇文章进行学习
https://www.jianshu.com/p/8d198c353cbe